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We investigate effect of impulse on the model of price fluctuation in single commodity market. We es-

tablished that impulsive functional differential equation is more adequate as a modeling tool. We show
the roles of impulses in changing the behavior pattern of solution of impulsive functional differential equation. Using
second method of Lyapunov , we are able to establish the stability of the model.

1. INTRODUCTION :

In a single good market, there are three variables: the quantity demanded g, , the
quantity supplied g, and the price p . The equilibrium is attained when the excess demand is
zero g, — qs = 0, that is the market is cleared. But generally the market is not in equilibrium
and at an initial time t, the price p, is not at the equilibrium value p, thatis py #p.Insucha
situation the variables g, g5 and p must change over time and are considered as function of
time. The dynamic question is given sufficient time, how as the adjustment process p(t) - p as
t — oo to be described?

The dynamic process of attaining equilibrium in a single market model is tentatively
described by differential equations, on the basis of considerations on price changes governing
the relative strength of the demand and supply forces. For the sake of simplicity, the rate of
price change with respect to time is assumed to be proportional to excess demand q; — ¢ .
Moreover, the definitive relationships between the market price p of a commodity, the
quantity demanded and the quantity supplied are assumed to exist. These relationships are
called the demand and supply curve, occasionally modeled by demand function g4 = q,4(p) or a
supply function g, = q4(p) . In a case where the rate of price change with respect to time is

assumed to be proportional to the excess demand, the differential equation belongs to the class

Ldp

5 i = f(qS(P),CId(P))' e (1)

of differential equations . The question that arises is about the nature of the time path, resulting
from equation (1.1). In [9] Muresan studied special a case of fluctuation model with time

delay of the form
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dp a cp'(g(®)

- = ( - lo(0) p®) .. (12)

dt b+pi(t) d+ pr(g(t))

where a,b,c,d,r >0,q €[1,»), g € C[R,,R,],and proved that there exist a positive

bounded unique solution.
Rus and lancu [10] generalized the model equation (1.2) and studied the model of the form
dp
—=F(p(t)),p(t - t), t>0
dt (P( )) p(t—1)p) . (13)
p(t) = o(t), te[-7,0]
They proved the existence and uniqueness of the equilibrium solution of the model considered

and established some relations between this solution and coincidence points.

N

IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS : An empirical time series analysis [4,12] of
German macroeconomic data emphasized to model capital intensity subject to short term
perturbations at certain moments of time. It is unlikely to have a regular solution of equation

(1.3). The solution must have some jumps that follows a regular pattern. An adequate
mathematical model for a long term planning will be the following impulsive functional differential

equation
dp
2= Fe@®pJp®), t20, t# e 2)
Ap(t;) =p(t; +0) —p(t) = pi(p(ty), i=12,...
Wherety € R,; tp< t; < t <--..., limt; =o0; Qbeadomainin R,

{00
Containing the origin; F : 2 X PC{[-7,0],2} >R ; p;: R >R,i=12,--

are functions that characterize the magnitude of the impulsive effect at the time ¢; .

p(t;) and p(t; + 0) are respectively the price levels before and after the impulse effects and for
t > ty, pr € PC{[—71,0],02}is desigined by p,(s) =p(t+s), -1 <s<0

Letp, € CB{[-7,0],02}, p(t) =p(t;ty, o), v € 2,the solution of the equation (2.1)

p(tto,po) = Po(t —tp), t-T<t< i

Satisfying the initial conditions
p(to + 0,t9,p9) = po(0)

.. (2.2)
J*(to, po) the maximal interval of type [t,, B) in which the solution p(t;ty,py) is define

and by ||poll; = , [rtnax | [Ipo(t — to)| | the norm of the function p, € CB{[—1,0], 2}

0-7, to

Let us assume the following conditions :
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H; — The functionF is continuous on 2 X PC{[-1,0], 0}
H, — The function F is locally lipschitz continuos with respect to its second argument on
0 X PC{[-1,0],0}

Hy —  There exist a constant m > 0 such that |F(p,p;)| £ m <o for (p,p.)
€ 0XPC{[~1,0,0)

H4’ - b € [‘Q!R]} i= 1,2, """"
Hy — The functions (I +p;): @~ 2, i =12, whereiis the identity in ()

H6 - t0< tl < t2<, llmtl=00

[—00

H, — Let there exist a piecewise continuous function V : [ty )X 2 - R, which belong to
class Vy and for which V(t,p*(t)) = 0,t > t,
Under the assumption of hypothesis H we define

Gy =[Pt (p) <t<1,(p), PEN, k=12,., (2.3

Letp; € CB{[-7,00,0}, p*(t) = p*(t,te,p),p* € Q isthe solution of equation (2.1)

.(2.4)

“(t;to,py) = t—ty), t—T<t<t
Satisfying the initial conditions [p (Btop1) = palt—to) 0 0

p*(ty +0,t0,p1) = p1(0)

For afunctionV € V;,and some ,t > t; we shall use also the class
0y = [p € PC[ ty, ), 0]:V(5,p(s)) < V(¢t,p(t), t-7 <s<t]

REMARK : Corollary 1 and theorem (1) are going to be useful in establishing the stability of our model
equation

Corollary 1: Assume that (i) condition H; — Hg holds
(ii) The functionV € Vj is such that V(t+ O.p+ () <V(tp), p € Ot=t, k=12,..
and the inequality D, < (V, t, p(t)) <0,t # ty, k=12, Jisvalid fort € [ty,®),p € {1,

Then V(t,p(t, to, 90)) < V(to +0,90(0)), t € [t, )
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Theorem 1 : Assume that (i) condition H; — Hg holds
(ii) The function G : [ t,) X R, — R is continuous in each of the sets [ty_1,t] X Ry, k=12, ...
(iii)By, € C[R, ,R,] and ¢, (u) = u+ By (u) =0,k = 1,2,...are nondecreasing with respect to u

(iv) The maximal solution of the problem

du

2 =G(tu®)t#

u(ty) = uy =0 (2.5
Au(ty) = By (ulty), ty > to, k=1.2,..
is defined in the interval [t , ),
(v) The functionV € Vy is such that V (ty +0,90(0)) < ,
V(t+00, 1)< 0 (V(ED), pEDL=Y k=12,..
and the inequality

Dy V(t,x(t)) So(Vit,x),x €0, t=t,, k=12 Jisvalid fort € [ty,»),€ 0,

Then V(t,x(t, to, 00)) S ut(t, to, Ug), t € [ty, )

Theorem 2 : Assume that condition (i) H; — Hg holds
(2) There exist a function V. € V,, such that H, holds
a(lp— p* @I <V(Ep), (tp) €[ty )X 2,a €k ...(2.6)

V(t +0,p+ Iy (p)) < V(t,p),p € 0, then the solution p*(t) of equation (1.4) is stable.

Proof :

Lete > 0, it follows from the properties of the function V that 3 a constant § = §(ty,e) > 0
suchthatifx € 0. ||x|]| < &,then SUD||xl<s V(ty+0,x) <a(e)

Let gy € PC{[-r,0],2): [lgol| <8, then ||, (0)]| < |lol], <6

and V(tO +0, (pO(O)) <a(e) e (27)

Let p(t) = p*(t; ty, @o) be the solution of problem (2.1), since all the conditions of corollary 1
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are met, then V (£, x(¢; tg, o) < V(g +0,00(0)),t € [tg,0) wrvveree (2.8)
From (2.6), (2.7) and (2.8) there follows the inequality

a(lp - p* @I <Vt to, 90) < V(tg+0,00(0)) <V(t,p)

Whence we obtain that |p*(t; ty, @o)| <€ fort > t,. Thisimplies that solution p*(t) of equation
(2.1) is stable m

Theorem 3 : Let the condition of theorem (2) hold and let a function b € k such that

V(t,P) <b(lp—-p*@)]), (t,p)€E[ty,®)XQ woveeee (2.9), then the solution
p*(t) of problem (2.1) is uniformly stable.

Proof :Lete >0 be given choose § = §(g) > 0sothat b(6) < a(e).

Let ¢, € PC{[-7,0],02}: ||<p0||r < §and p*(t) = p*(t; to,@,) be the solution of problem (2.1) and
(2.2). As in theorem 2, we prove that
a(lp (t! tO!(pOJ D < V(t;p(t'to; @9 ) < V( tO + 0! (pO(O)) ’ t2 tO ...... (210)

From (2.9) and (2.10) we get to the inequalities
a(lp (t:to 9o, 1) < V(o +0,00(0)) < blgg(0)]) < b({lgol] ) < b(8) < a(e)

From which it follows that |p (t; ty, o, | <€ ,for t>t, m

Theorem 4 : Assume that

(i) Conditions H; — Hg holds
(i) There exist a function V € V such that H, holds

allp - p* @) <V(tp) < b(lp- "), (t,p)€Elty, ) XD,ab€k pe Qt=t;,i=12,.
V(t+0,p+ () V(D) .n(211)
and the inequality D(+2.1)V(t,P(t)) <—c(p®)-p®) t#t, i=12., (212)

Then the solution p*(t) of problem (2.1) is uniformly asymtotically stable.
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Proof:1.leta = constant >0,[p€R" {lp— p*(t)| <a}C 0.
Foranyt € [ty,) denote Viz =[p€ 2 :V(t+0,p) <a(a)
from (2.8),we deduce V;} C[p€ R": |p— p*(O)| < a] C 2.
From condition (2) of theorem 4, it follows that for any t, € R and function ¢, € PC {[-r,0],2}:

9o(0) € Vt;’la,we have p(t;ty, 9o) € Vig, t 2 t,

Let € > 0 be chosen. Choose 1 = 1(€) so thatb(n) < a(e) and let t > 2@ C( ) ) If we assume that for

eacht € [ty, ty + T1, the inequality | p(t; to, @o)| = 1 is valid then from (2.6) and (2.12) we get

V(t,p(t; ty, @) < V( to +0, goO(O)) - f; c|p(s; to, @o))ds < b(a) —c(n)T < 0 which contradict
(2.11).The contradiction obtained shows that there exist t* € [to, t, + T] such that | p(t*; ty, @o)| <M

Then from (2.6) and (2.11) it follows that t > t* (hence for any t > t, +
T, then the following inequality hold. a(| p(t; to, @o)|) < € for

t> ty+T.
2 LetA = constant > 0 be such that b(1) < a(a). Then if A = constant > 0 be such that
b(2) < a(a). Then if ¢ € PC{[-7,0],0}: (llog INr <6+ lgol| <6
(2.11) implies V( t +0,04(0)) < b(l] 9o (0)]]) < b(||<p0||r) < b(A) < a(a) which shows that

@y € PC {[-7,0],2}: ¢,(0) € Vt;}z .From what we proved in item 1, it follows that the
p*(t) of problem (2.1) is uniformly attractive and since theorem 3 implies uniform stability, then the
solution p*(t) is uniformly asymtotically stable m

Examples :

1. leta,b,cand d > 0,alinear demand function q; = a — b, and a linear supply
function q; = —c + d, be given and the functionf = a(qq— q5), a>0
They can be put into equation (1.1), given the linear non-homogenous differential equation

—t =ala+c—ph+d) =pa (a—” -+ d)) corresponding to a the special type of

differential equation (1.1). It complementary and particular solutions are immediate.

d_p _ a+c p(t o(t)
2. Let 22 = (p(t) b-d B2 ) ) (2.13)

Be a special case of model studied by Markey and Blair [151] where 0 < a(t) <,
and 7 is a constant . If at the moments t;,t,, -
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(to <t < ty <+ <t; <tjyg <+ ..and lim i = o) the above equation is subject to
>0

impulsive perturbations then the adequate model mathematical model is the following
impulsive equation
[ dp_ [ate_,_, P00
dt p(t) p(t)

a+tc )
|8p(t) = =6 (P(tz) - m), i=1,..

] v . (2.14)

where t, € R,,p(t) represent the price at moment t, §; € R are constants.i = 1,2, .....

obviously p* = aTJr; is an equilibrium of (2.14). Let there exist a constant § > 0 such thatd < b —f

and the inequalities 0 < §; <arevalid fori=1,2,...., then p* is uniformly asymptotically stable.

Given
V(t,p) =§ (p— p")?.then the set Q; = [p € PC[[ty, @), (0,)]: (p(s) = p*)* < (p(t) = p*)?
t—t<s<tfort>ty,t #t, we have
Déagy V(E0(1)) = a(p(®) = p")[a—bp(t) + ¢ — dp(t - a(t))]
Since p* is an equilibrium of (2.14), we have
D14y V(tp(®) = alp(t) = p")[=bp(t) = p*) = dp(t - o(t)) = p']
From the last relation for t > t,,t # t; and p € {);,we obtain the estimate

Diap V(tp(®) < [-b+d] (p— p*)? < —aB(p— p*)?,alsoif 0 <6, < foralli=12,..,then

1
V({6 +0),p(t +0) = 2 [(1-68)p(t) + 6" —p 1 <V(t,p(t))-

Since all conditions of theorem 4 are satisfied p* is uniformly asymptotically stable.

4 CONCLUSION : From the example given in section 3, we observe that if the constant §; are
such that §; < 0 or 6; > 2, then condition 4 of theorem 3 is not satisfied and we cannot
make any conclusion about asymptotic stability of p*. This example demonstrate the utility
of second method of Lyapunov. The main characteristic of the method is the introduction of
a function, namely Lyapunov function which defines a generalized distance between p(t)
andp*.

By means of piecewise continuous function we give the conditions for uniform
asymptotic of p*. Atechnique is appllied, based on certain minimal subset.
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