On the Ternary Quadratic Equation

$$
2 y^{2}+x y=4 z^{2}
$$

KEYWORDS

Integral solutions, Ternary quadratic.

Dr.R.Anbuselvi

Associate Professor, Department of Mathematics, A.D.M. College for women, Nagapattinam, India

K.S.Araththi

Research scholar,Department of Mathematics, A.D.M. College for women,

Nagapattinam, India

ABSTRACT The ternary Quadratic Diophantine equation is analyzed for its non - zero distinct integer solutions. Four different patterns of non-zero distinct integer solutions to the equation under consideration are obtained. A few interesting relation between the solutions and special numbers are exhibited.

I. INTRODUCTION

The Ternary Quadratic Diophantine Equation offers an unlimited field for research because of their variety [1-2]. For an extensive review of various problems, one may refer [3-10]. This communication concerns with yet another interesting Ternary Quadratic equation

$$
2 y^{2}+x y=4 z^{2} \text { representing a }
$$ homogenous cone for determining its infinitely may non-zero integral solutions. Also a few interesting relations among the solutions have been presented..

II. NOTATIONS

obl ${ }_{n}$ - Oblong number of rank ' n '
$\mathrm{t}_{\mathrm{m}, \mathrm{n}^{-}}$Polygonal number of rank ' n ' with sides'm'

II. METHOD OF ANALYSIS

The ternary quadratic equation to be solved in integers is
$2 y^{2}+x y=4 z^{2}$
Now, introducing the linear transformations
$x=u+v ; y=u-v$.
In (1), it leads to
$3 u+v-4 u v=4 z$ \qquad
We solve equation (3) in two different methods and obtain two sets of solutions

METHOD : I

(3) can be written as
$(v-2 u)^{2}=u^{2}+(2 z)^{2}$
(i) Let $z=p q, u=p^{2}-q^{2}$
and $v=3 p^{2}-q^{2}$
Hence $x(p, q)=4 p^{2}-2 q^{2}$

$$
y(p, q)=-2 p^{2}
$$

$$
z(p, q)=p q
$$

PROPERTIES

(i) $\quad x(n, n+1)+10 y(n, n+1)+100 z(n, n+1) \equiv 0(\bmod 2)$
(ii) $\quad y(n, n+1)+2 z(n, n+1) \equiv 0(\bmod 2)$
(iii) $\quad x(n, n+1)+y(n, n+1)+2=4 o b l_{n}$
(iv) $\quad x(n, 1)-y(1, n)+n^{2} \equiv 0(\bmod 2)$
(v) $\quad x(n, n+1)-z(n, n+1)+2 \equiv 0(\bmod 3)$
(ii) Let $2 z=p^{2}-q^{2}$

$$
\begin{aligned}
& u=2 p q \\
& v=p^{2}+q^{2}+4 p q
\end{aligned}
$$

By taking $p=2 p: q=2 q: z=p-q$,

$$
u=8 p q: v=2 p^{2}+2 q^{2}+16 p q
$$

Hence $x(p, q)=2 p^{2}+2 q^{2}+24 p q$

$$
\begin{aligned}
& y(p, q)=2 p^{2}+2 q^{2}-8 p q \\
& z(p, q)=p-q
\end{aligned}
$$

PROPERTIES

(i) $\quad x(n,-1)-3 y(n, 1) \equiv 0(\bmod 8)$
(ii) $x(n, n+1)+2 z(n, n+1) \equiv 0(\bmod 2)$
(iii) $10 x(n, 1)+30 y(1, n) \equiv 0(\bmod 8)$
(iv) $x(n, n)+y(-n,-n) \equiv 0(\bmod 2)$
(v) $y(n, 1)+z(1, n)-2 n^{2} \equiv 0(\bmod 3)$

METHOD : 2

Writing equation (3) as

$$
\begin{equation*}
\frac{u}{(2 z+v)}=\frac{(2 z-v)}{(3 u-4 v)}=\frac{a}{b} \tag{4}
\end{equation*}
$$

it is equivalent to the system of equations

$$
\begin{aligned}
& b u-2 a z-a v=0 \\
& -3 a u+2 b z+(4 a-b)=0
\end{aligned}
$$

from which we get
$u=-8 a^{2}+4 a b ; v=2 b^{2}-6 a^{2}$

Using (5) in (2), we obtain the integer solutions to (1) as given below:

$$
\begin{aligned}
& x=x(a, b)=-14 a^{2}+2 b^{2}+4 a b \\
& y=y(a, b)=-2 a^{2}-2 b^{2}+4 a b \\
& z=z(a, b)=3 a^{2}+b^{2}-4 a b
\end{aligned}
$$

PROPERTIES

(i) $\quad x(n, 1)-3 y(n,-1)+5+s t_{n} \equiv 0(\bmod 6)$
(ii) $\quad y(m, n)+2 z(n, m) \equiv 0(\bmod 4)$
(iii) $y(n, 1)+z(n, 1)+1=n^{2}$
(iv) $x(n, n)-y(n, 1) \equiv 0(\bmod 2)$
(v) $y(n, 1)-x(1, n) \equiv 0(\bmod 8)$

It is observed that (4) may also be written in the following three ways

WAY: 1

$x=x(a, b)=-14 a^{2}+2 b^{2}-4 a b$
$y=y(a, b)=-2 a^{2}-2 b^{2}-4 a b$
$z=z(a, b)=-3 a^{2}-b^{2}-4 a b$

PROPERTIES

(i) $\quad x(1, n)+y(n,-1) \equiv 0(\bmod 8)$
(ii) $\quad x(1, n)+y(-1, n) \equiv 0(\bmod 3)$
(iii) $3 y(-1, n)+z(n,-1)-t_{3,4} \equiv 0(\bmod 2)$
(iv) $\quad x(m, m)-z(1, m) \equiv 0(\bmod 3)$
(v) $10 y(1, n)+100 z(n, 1) \equiv 0(\bmod 2)$

WAY:2

$x(a, b)=2 a^{2}-14 b^{2}-4 a b$
$y(a, b)=-2 a^{2}-2 b^{2}-4 a b$
$z(a, b)=-a^{2}-3 b^{2}-4 a b$

PROPERTIES

(i) $\quad x(n,-1)-y(1,-n) \equiv 0(\bmod 4)$
(ii) $4 x(n,-1)-12 y(1,-n) \equiv 0(\bmod 8)$
(iii) $\quad x(n,-1)+2 z y(n, 1) \equiv 0(\bmod 4)$
(iv) $\quad x(1, n)+7 y(n, 1)+t_{6,7} \equiv 0(\bmod 8)$
(v) $12 y(n, 1)-3 z(1, n)-t_{3,6} \equiv 0(\bmod 3)$

WAY: 3

$x=x(a, b)=2 a^{2}-14 b^{2}+4 a b$
$y=y(a, b)=-2 a^{2}-2 b^{2}+4 a b$
$z=z(a, b)=a^{2}+3 b^{2}-4 a b$

PROPERTIES

(i) $400 x(n,-1)+200 y(1,-n) \equiv 0(\bmod 8)$
(ii) $\quad x(n,-1)-z(1, n)+t_{3,5}+n^{2}=0$
(iii) $y(1,-n)-z(1, n)+t_{3,2} \equiv 0(\bmod 5)$
(iv) $x(m, m)+y(1, m)+10 z(m, 1) \equiv 0(\bmod 4)$
(v) $10 z(m, 1)+5 y(1, m)+20 m=0$

III.CONCLUSION

To conclude, one may search for other patterns of solutions to the equation under consideration.

REFERENCES

1. Meena K,Vidhyalakshmi S,Gopalan M.A,Priya K,Integral points on the cone ,Bulletin of Mathematics and Statistics and Research,2014,2(1),65-70.
2. Gopalan M.A,Vidhyalakshmi S,Nivetha S,on Ternary Quadratic Equation Diophantus J.Math,2014,3(1),1-7.
3. Gopalan M.A,Vidhyalakshmi S,Kavitha A,Observation on the Ternary Cubic Equation Antarctica J.Math,2013;10(5):453-460.
4. Gopalan M.A,Vidhyalakshmi S,Lakshmi K,Lattice points on the Elliptic Paraboloid, Bessel J.Math,2013,3(2),137-145.
5. Gopalan M.A,Vidhyalakshmi S,Umarani J,Integral points on the Homogenous Cone ,Cayley J.Math,2013,2(2),101-107.
6. Gopalan M.A,Vidhyalakshmi S,Sumathi G,Lattice points on the Hyperboloid of one sheet , The Diophantus J.Math,2012,1(2),109-115.
7. Gopalan M.A,Vidhyalakshmi S,Lakshmi K,Integral points on the Hyperboloid of two sheets, Diophantus J.Math,2012,1(2),99-107.
8. Gopalan M.A,Vidhyalakshmi S,Mallika S,Observation on Hyperboloid of one sheet Bessel J.Math,2012,2(3),221-226.
9. Gopalan M.A,Vidhyalakshmi S,Usha Rani T.R,Mallika S,Integral points on the Homogenous cone Impact J.Sci.Tech,2012,6(1),7-13.
10. Gopalan M.A,Vidhyalakshmi S,Kavitha A,Integral points on the Homogenous Cone ,The Diophantus J.Math,2012,1(2) 127-136..
