ORIGINAL RESEARCH PAPER	Mathematics	Volume - 7 Issue - 4 April-2017 ISSN - 2249-555X IF : 4.894 IC Value : 79.96
CONSTRUCT ROOM	STABILITY OF THE FUNCTIONAL EQUATION	
KEYWORDS	functional equation, Hyres–Ulam stability, generalized Metric Space and fixed point approximation.	
K.HARIPRASAD		MRUDULA RAVINDRAN
Department of Mathematics, C.M.S. College of Science		Head of the Department, Department of Mathematics,
and Commerce, Coimbatore		C.M.S.College of Science and Commerce, Coimbatore.
ABSTRACT Hilbert space and banach space are well known examples for Topological vector space. In this paper, the authors] investigate the general solution of new cubic functional equation, $f(x+y+xy) = f(x) + f(y) + xf(y) + yf(x)$ and discuss its generalized Hyres – Ulam stability, via, fixed point approach.		

1.1 INTRODUCTION

Consider the functional equation which defines multiplicative derivations in algebras,

$$f(x) = xf(y) + yf(x).$$
 (1.1)

It is easy to see that the real-valued function f(x) = x in x is a solution of the functional equation (1.1) on the interval $(0,\infty)$.

During the 34^{th} International Symposium on Functional Equations, Gy. Maksa [1], posed the problem concerning the Hyers-Ulam Stability on the interval (0,1] for the functional equation (1.1), and J.Tabor gave an answer to the equation of Maksa in [5]. On the other hand, Zs.Pales [2] remarked that the functional equation (1.1) on the interval $[1,\infty)$ for real-valued functions is superstable.

The following functional equation is obtained from the functional equation (1.1)

$$f(x + y + xy) = f(x) + f(y) + xf(y) + yf(x) \quad (1.2)$$

In this chapter, we solve the functional equation (1.2) and then, by following the ideas of J.Tabor [5]and Zs.Pales [2], the Hyers-Ulam stability on the interval (-1,0] and the superstability on the interval $[0,\infty)$ of the functional equation (1.2) will be investigated, respectively.

Throughout this chapter, we denote \mathbf{R} and be the sets of real numbers and set of positive integers, respectively.

1.2 SOLUTIONS OF EQUATION (1.2)

It is easy to see that the real-valued function $f(x) = (x+1)\ln(x+1)$ is a solution of the

functional equation (1.2) on the interval $(-1, \infty)$. In the following theorem, we will find out the general solution of the functional equation (1.2) on the interval $(-1, \infty)$.

Theorem 1.1

Let X be a real (or complex) linear space. A function $f:(-1,\infty) \rightarrow X$

Satisfies the functional equation (1.2) for all $x \in (-1,\infty)$ if and only if there exists a solution $D: (0,\infty) \rightarrow X$ of the functional equation (1.1), Such that

$$f(x) = D(x+1)$$
 for all $x \in (-1,\infty)$.

Proof.

Necessity. Let us define the mapping $D: (0,\infty) \to X$ by $D(x) \coloneqq f(x-1)$. We claim that D is a solution of the functional equation (1.1). Indeed, for all $x, y \in (0,\infty)$, we have

D(xy) = f(xy-1) = f((x-1) + (y-1) + (x-1)(y-1))= f(x-1) + f(y-1) + (x-1) f(y-1) + (y-1) f(x-1) = xD(y) + yD(x)

Therefore D is a solution of the functional equation (1.1), as claimed, and f(x) = D(x+1) for all $x \in (-1,\infty)$. Sufficiency. This is obvious.

1.3 HYERS -ULAM STABILITY OF EQUATION (1.2)

We first state a theorem of F. Skof [3] concerning the stability of the additive functional equation f(x+y) = f(x) + f(y) on a restricted domain.

ORIGINAL RESEARCH PAPER

Theorem 1.2

Let X be a real (or complex) Banach space. Given C > 0, let a mapping $f : [0, C) \to X$ satisfy the inequality

$$\left\|f(x+y) - f(x) - f(y)\right\| \le \delta$$

for some $\delta \ge 0$ and for all $X, Y \in [0, C)$ with $X + Y \in [0, C)$. Then there exists an additive mapping $A: \mathbf{R} \to X$ such that

$$\|f(x) - A(x)\| \le 3\delta \text{ for all } x \in [0, c].$$

Our main theorem in this section is the Hyers-Ulam stability on the interval (-1,0] of the functional equation (1.2) and the proof is similar to the one given in [5].

Theorem 1.3

Let X be a real (or complex) Banach space, and let $f:(-1,0] \rightarrow X$ be a mapping satisfying the inequality

$$\|f(x+y+xy) - f(x) - f(y) - xf(y) - yf(x)\| \le \delta$$
 (1.3)

for some $\delta > 0$ and for all $x, y \in (-1, 0]$. Then there exists a solution $H : (-1, 0] \rightarrow x$ of the functional equation (1.2) such that

$$\left\|f(x) - H(x)\right\| \le (4e)\delta \tag{1.4}$$

for all $X \in (-1, 0]$.

Proof.

Let $g:(-1,0] \rightarrow X$ be a mapping defined by

$$g(x) = \frac{f(x)}{x+1}$$

for all $x \in (-1, 0]$. Then, by (1.3), we see that *g* satisfy the inequality

$$\|g(x+y+xy)-g(y)-g(x)\| \le \frac{\delta}{(x+1)(y+1)}$$

for all $X, y \in (-1, 0]$. If we define the mapping $F : [0, \infty) \to X$ by

$$F\left(-\ln(x+1)\right)=g\left(x\right)$$

Volume - 7 | Issue - 4 | April-2017 | ISSN - 2249-555X | IF : 4.894 | IC Value : 79.96

for all $x \in (-1,0]$, then by setting $u = -\ln(x+1)$ and $v = -\ln(y+1)$ we obtain $|| F(u+v) - F(u) - F(v) || \le \delta e^{u+v}$ (1.5)

for all $U, V \in [0,\infty)$. This means that

$$\left\|F(u+v)-F(u)-F(v)\right\|\leq\delta e^{c}$$

for all $U, V \in [0, C)$ with U + V < C, where C > 1 is an arbitrary given constant.

According to Theorem 4.2, there exists an additive mapping $A: \mathbf{R} \to X$ such that

$$\left\|F(u) - A(u)\right\| \le 3e\delta \tag{1.6}$$

for all $U \in [0,1]$. Moreover, it follows from (4.5) that

$$\|F(u+1) - F(u) - F(1)\| \le \delta e^{u+1}$$
$$\|F(u+2) - F(u+1) - F(1)\| \le \delta e^{u+2}$$
$$\vdots$$
$$\|F(u+k) - F(u+k-1) - F(1)\| \le \delta e^{u+k}$$

for all $U \in [0,1]$ and $k \in N$. Summing up these inequalities we obtain

$$\|F(u+k) - F(u) - kF(1)\| \le \delta e \cdot e^{u+k} \left(1 + e^{-1} + \dots + e^{-k+1}\right)$$

$$\le \delta e \cdot e^{u+k}$$
(1.7)

for all $U \in [0,1]$ and $k \in \mathbb{C}$. We assert that

$$\left\|F(v) - A(v)\right\| \le 4\delta \mathbf{e} \cdot \mathbf{e}^{v} \tag{1.8}$$

for all $V \in [0,\infty)$.

In fact, let
$$v \ge 0$$
 and let $k \in \{0\}$ be

given with $V - k \in [0,1]$. Then, by (1.6)and (1.7), we have

$$\|F(v) - A(v)\| \le \|F(v) - F(v - k) - kF(1)\|$$

+ $\|F(v - k) - A(v - k)\| + \|A(k) - kF(1)\|$
 $\le \delta e \cdot e^v + 3\delta e + k \|A(k) - kF(1)\|$
 $\le \delta e \cdot e^v + 3\delta e + k \|A(1) - F(1)\|$
 $\le \delta e \cdot e^v + 3\delta e + 3\delta e v$
 $\le \delta e (e^v + 3(1 + v))$
 $\le 4\delta e \cdot e^v$

462 ₩ INDIAN JOURNAL OF APPLIED RESEARCH

ORIGINAL RESEARCH PAPER

Hence, from (1.8) and the definition of ${\ensuremath{\mathsf{F}}}$. It follows that

$$\|g(x) - A(-\ln(x+1))\| \le 4\delta e e^{-\ln(x+1)} = \frac{4\delta e}{x+1}$$

for all
$$X \in (-1, 0]$$
, that is,

$$\left\|\frac{f(x)}{x+1} - A(-\ln(x+1))\right\| \le \frac{4\delta e}{x+1} \tag{1.9}$$

for all $x \in (-1,0]$. If we put $H(x) = (x+1)A(-\ln(x+1))$ for all $x \in (-1,0]$,

we can easily check that H is a solution of the functional equation (1.2) by Theorem 1.1. This and (1.9) yield that

$$\left\|f(x) - H(x)\right\| \leq (4e)\delta$$

for all $x \in (-1, 0]$ which proves (1.4). The proof of the theorem is complete.

1.4 SUPERSTABILITY OF EQUATION (1.2)

For the purpose, we will introduce the next result [4] which is essential to prove the main theorem.

Theorem 1.4

Let X be a real (or complex) Banach space, and let C > 0 be a given constant. Suppose that a mapping $f: \mathbf{R} \to X$ satisfies teh inequality

 $\left\|f(x+y) - f(x) - f(y)\right\| \le \delta$

for some $\delta \ge 0$ and for all $X, Y \in \mathbf{R}$ with

|x|+|y| > C. Then there exists a unique additive mapping $A: \mathbf{R} \to X$ such that

$$\|f(x) - A(x)\| \le 9\delta$$

for all $x \in \mathbf{R}$.

Now let us prove the main theorem of the section which is the superstability of the functional equation (1.2) on the interval $[0,\infty)$.

Therorem 1.5

Let X be a real (or complex) Banach space, and let $f:[0,\infty) \to X$ be a mapping satisfying the inequality,

$$\|f(x+y+xy) - f(x) - f(y) - xf(y) - yf(x)\| \le \delta(1.10)$$

for some $\delta > 0$ and for all $x, y \in [0, \infty)$.

Then f satisfies the functional equation (1.2) for all

 $X, Y \in [0, \infty)$.

Volume - 7 | Issue - 4 | April-2017 | ISSN - 2249-555X | IF : 4.894 | IC Value : 79.96 Proof.

Defining the mapping $g:[0,\infty) \to X$ by

$$g(x) = \frac{f(x)}{x+1}$$

for all $X \in [0,\infty)$ as in the proof of Theorem 1.3, and defining the mapping $F : [0,\infty) \to X$ by

$$F\left(\ln(x+1)\right) = g(x)$$

for all $X \in [0, \infty)$, we see by putting $U = \ln(x+1)$ and $V = \ln(y+1)$, that

$$\| F(u+v) - F(u) - F(v) \| \le \delta e^{-(u+v)}$$
(1.11)

for all $U, V \in [0, \infty)$. We claim that F is additive.

From (1.1.1) with
$$\delta_n = \delta e^{-n} (n \in N)$$
, we obtain $\|F(u+v) - F(u) - F(v)\| \le \delta e$,

for all $U, V \in [0, \infty)$ with U + V > N.

We now define a mapping $T: \mathbf{R} \to X$ by

$$T(u) = \begin{cases} F(u) \text{ for } u \ge 0, \\ -F(u) \text{ for } u < 0 \end{cases}$$

It is not difficult to see that
$$\left\|T(u+v) - T(u) - T(v)\right\| \le \delta$$

for all $u, v \in \mathbf{R}$ with |u| + |v| > n. Therefore, by Theorem 1.4 there exists a unique additive mapping $A_n : \mathbf{R} \to X$ satisfying

$$\left\|T\left(u\right) - \mathcal{A}_{n}\left(u\right)\right\| \leq 9\delta_{n} \tag{1.12}$$

for all $u \in \mathbf{R}$. Let $mn \in \text{with } n > m$. Then the additive mapping $A_n : \mathbf{R} \to X$ satisfies $\|T(u) - A_n(u)\| \le 9\delta_n$ for all $u \in \mathbf{R}$. The uniqueness argument now implies $A_n = A_m$ for all $n \in \text{with} \quad n > m > 0$, and thus $A_1 = A_2 = \dots = A_n = \dots$. Taking the limit in (1.12) as $n \to \infty$, we obtain $T = A_1$ and we deduce that F is additive. Now, according to the definitions of

F and *g*, we have

$$\frac{f(x)}{x+1} = F(\ln(x+1))$$
for all $x \in [0, \infty)$ that is,
 $f(x) = (x+1)F(\ln(x+1))$
for all $x \in [0, \infty)$, and hence we see that
f satisfies the functional equation (1.2) for all
 $x, y \in [0, \infty)$ by Theorem 1.1 since *F* is additive
and $D(x) = xF(\ln(x))(x \in [1, \infty))$ is a solution
of the functional equation (1.1), This completes the
proof of the theorem.

CONCLUSIONS

In this paper, the authors investigated the Generalized Hyers-Ulam-Rassias stability using direct method as well as using fixed point method. We find that the both the methods yields the same conclusion

REFERENCES:

[1] **Gy. Maksa,** Problems 18, In 'Report on the 34^{th} ISFE' Aequationes Math 53 (1997), 200-201.

[2] **Zs. Pales**, Remark 27, In 'Report on the 34th ISFE', Aequationes Math 53 (1997), 200-201.

[3] **F. Skof**, sull approximazione delle appliazioni localmente δ -additive, Atti Acad. Sc. Torino 117 (1983), 377-389.

[4] **F. Skof,** Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.

[5] J. Tabor, Remarks 20, In 'Report on the 34^{th} ISFE', Aequationes Math. 53 (1997), 194-196.