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ABSTRACT

One of the more effective methods for the simultaneous approximation of the roots of a polynomial is the Weierstrass

method. In 2016, Proinov provide a detailed convergence analysis of the method and his results improve and generalize
existing ones in the literature. To show some practical applications of Weierstrass iterative method, we develop code using computational
system Wolfram Mathematica and Proinov’s semilocal convergence theorem. Several numerical examples are provided. Furthermore, we give
strong mathematical proof of experiment of Dochevand Byrnev (1964) and make a modification of their experiment with complex polynomial.

INTRODUCTION

Throughout this paper (K,|-|) denotes an
algebraically closed normed field and K[Z] denotes

the ring of polynomials over K. Let the vector space
K" be endowed with the p -norm - o K" — Rt

n

)
defined by Il x Il = [Z|X,. |p) for some 1< p<oo.

i=1
In the literature there is a lot of iterative
methods for simultaneous computation of all zeros of
f . In 1891, Weierstrass [10] published his famous
iterative method. The Weierstrass method is defined
by the following iteration

XD = X0 W (49), k=0,1,2,..., (1)

where the operator W, :D < K" — K " is defined
by

f(x)
aoH(X/ —X; )

J#i

W(x) = (i=1...,n, ()

where a,e€ K is the leading coefficient of f, the

domain D of W, is the set of all vectors in K" with

distinct components. The Weierstrass method (1) has
second-order of convergence provided that all zeros
of f are simple. Otherwise, it has only linear
convergence.

In 1960-1966, the Weierstrass method (1)
was rediscovered by Durand [4], Dochev [2], Kerner
[5] and Presi¢ [8]. That is why it is known also as
‘Dochev method’ or ‘Weiersrass - Dochev method’ or
‘Durand - Kerner method’ and so on. Since 1980, a
number of authors have obtained semilocal
convergence theorems for the Weierstrass method
under different initial conditions. In 2016, Proinov

[9], using a new approach for studding convergence
of the iterative methods, present a theorem which
generalizes and improves the all previous results in
this area.

Throughout this paper we follow the
terminology from Proinov [9]. For the sake of
brevity, for a given p such that 1< p<oo, we

always denote by g the conjugate exponent of p,
ie. g
1/ p+1/ g=1.

is defined by means of 1<g<oo and

Proinov [9] study the semilocal convergence
of the Weierstrass iteration with respect to the

function of initial conditions E,:D < K" — R+
defined as follows

W, (%)
d(x)

Ef(X):‘ 3

p
where the function d: K" — R" is defined by
A= (0N, d(), with d(x)=min|x x|

Theorem 1 (Proinov [9]) Let K be a complete
normed field, fe K[Z be a polynomial of degree

n>2 and 1< p<oo. Suppose x"e K" is an initial

guess with distinct coordinates satisfying

E 0% oy and JELNEL @)

where the function E, is defined by (3) and the real
function ¢ is defined by

(nh-n"t ( t "
(1-t)(1-2"7t) I (n=0"Pa=2"%) )

Then the following statements hold true.

PO =
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(i) CONVERGENCE. Starting from x°, the Weierstrass
iteration (1) is well-defined, remains in the closed ball
U (x,,0) and convergent to a root-vector & of f,
where

W, (X))l

P pE o)

and the real function £ is defined by

g n-1

B = (n1 _1)t t[l — 1)“pz1—2”%) j .

Besides, the convergence is quadratic provided that
P(E,(x")N<1.
(ii) A PRIORI ESTIMATE.. For all k>0 we have the
following estimate

gkﬂzk-l
1-02*
where 2 =¢(E;(x")) and =1-2"7F . (x°) .

I x“—&0 2 Ihx" —°1,

(iii) FIRST A POSTERIORI ESTIMATE. For all k>0 we
have the following estimate

X — Xl
1=B(E;(x"))
(iv) SeCOND A POSTERIORI ESTIMATE For all k>0 we
have the following estimate
Il X< =& #MZII XK Xk,
k"% k
where 1, = #(F (x*)) and §, =1-2"9F (x").

X &1l #

(v) LOCALIZATION OF THE ZEROS. If @(E,(x°))<1

then the polynomial f has n simple zeros in K .
Moreover, for every k>0 the closed disks

Df ={ze K:z—XP |}y (1=12,..,n),

where r* = M

1=B(E(x7)

each of them contains exactly one zero of f .

, are mutually disjoint and

The main advantages of this semilocal result are:

o weaker sufficient convergence conditions;

e computationally verifiable a posteriori error
estimates;

e computationally verifiable sufficient conditions
for all zeros of a polynomial to be simple;

e localization of the zeros.

In this paper we concentrate on procedures
for the construction, analysis and practical application
of Weierstrass iterative method with Proinov’s
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theorem (2016) with the support of symbolic
computation through several programs written in
computer algebra system Wolfram Mathematica. We
emphasize that the construction of presented method
would be hardly feasible and most likely impossible
without the use of this specific computer software.
Two numerical examples are given to demonstrate
convergence characteristics of the proposed method.
Besides, we give strong mathematical proof of
experiment of Dochev and Byrnev to integer
polynomials (1964) and we present a modification of
the experiment of Burnev and Dochev with complex
polynomials.

ANALYSIS OF THE ALGO RITHM AND FLOW
CHART

Now, we show the applicability of Theorem
1. Namelly, if there exists an integer m=> 0 such that

E (XM <75

le/q and ¢(E(x™) <, &)

then f has only simple zeros and the Weierstrass
iteration (1) starting from x° is well defined and
converges to a root-vector £ K" of f.Moreover,
the method converges with order 2 to & provided that

the second inequality in (5) is strict.
Besides, the following two a posteriori
estimate errors hold:

I X —& I<max{e,.e,}, (6)
where
Il x5t — x5l
f= X X e, = Ity
1-B(Ex")) 1-0,4;

In the examples below, we apply the
Weierstrass iteration (1) using the stopping criterion

max{g,,e, < 1077  (k>=m). @)

For each example we calculate the smallest m>0

which satisfies the convergence condition (5), the

smallest kK > m for which the stopping criterion (7) is

satisfied, as well as the value of &, and €, for the last
k . From these data it follows that:
. f has only simple zeros;

. Weierstrass iteration (1) starting from x° is
well-defined and converges with second-order to a
root-vector of f

. at kth iteration the zeros of f are
calculated with an accuracy at least max{e,,¢€,}.

Today, mathematicians and computer
scientists carry out sophisticated mathematical
operations employing powerful computer machines
supported by the modern computer algebra systems
such as Mathematica, Maple, Axiom, GAP, Maxima,
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Sage and SymPy. These computer algebra systems,
which enable both symbolic computation and a
dynamic study using basins of attraction, are
available on Windows, Mac OS X and Linux.

In this paper, to realize the proposed
algorithm of Proinov, we develop several programs
written in computer algebra system Mathematica.

In Figure 1 we presented the flow chart of

the algorithm.
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Figure 1: Flow chart of the algorithm

SOME NUMERICAL EXAMPLES

We provide some numerical examples to
show some practical applications of the proposed
method in the case 0=00.

Example1.We consider the polynomial

f(2)=z 2152 %222%438 2%-1175 z1575
and the initial guess
X’ =(-5.7,-1.8,4.1,6.2,9.8)
which are taken from Nedzhibov et al. [6]. For this

initial guess we have F,(x")=0.408372 and
#(E (x")) =1636.760843 .
In this example we obtain that the

convergence condition (5) is satisfied for m=2 with
the values for quantities F£,(x*)=0.032277 and

#(E ;(x*))=0.163350.
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This guarantees that f has only simple

zeros and the iteration (1) (starting from x°) is well-
defined and converges to a root-vector £ of f with
second order. Also, the stopping criterion (7) is
satisfied for kK= 6. Moreover, we can see that at the
seventh iteration we have calculated the zeros of f

with accuracy less than 107,

In Table 1, we present the received error
estimates for every one zero of the polynomial from
fifth to seventh iteration.

TABLE -1

Values of error estimates for Example 1

| iter. | 5 | 6 | 7
&' 7.234634x 107 3.621339x 107  2.655468x 107
g’ 6.723266x 107" 4.057853x 107 2.598090x 10~
g’ 3.621339x 107 3.841573x107° 1.768520x 107
et 2.121631x107  9.207271x 10 2.404037x 107
g 8.679440x102  5222037x10°" 1.004064x 107
€l 5.239813x1072  1.058180x 107" 7.051512x107'*
€2 4869445x107  1.646617x10°° 6.899147x107"*
€3 2.622819x107  1.558854x 107 4.696250% 107'**
€4 1.536629x 10 3.736175x 107" 6.383846x10™™
€3 6.286240x 10 2.119026x 10" 2.666260x 107

max{e,e}  3.621339x107"°  4.057853x 107 2.655468x10°%

Example 2. In 2014, Petkovi¢ et al. [7] consider the
polynomial of the 21-st degree

f(2)=(z—4)(Z2*=1)(2*-16)(2°+9)(Z*+16)
X (22 +2Z2+5)(Z2°+22+2)(2°-22+2)
x (22 —4z+5) (2" -2z +10).
We consider this polynomial with Abert's initial
approximation x’e c” (see [1]) given by

Xg =—i+r0 eXp(igv)s Hv 22(2\/—%}, v=L..,n,
n

n
(3)

21, a=-8 and r,=5. For this
example we E,(x")=0.414509
P(E (x°)) = 4.069897x 10* . Here, we obtain that the
convergence condition (5) is satisfied for m=20
with the values for quantities £ ,(x*)=0.017438
and ¢(E,(x*))=0.526174. This guarantees that f

has only simple zeros and the iteration (1) (starting
from x°) is well-defined and converges to a root-
vector £ of f with second order. Also, the stopping

where n =

have and

criterion (7) is satisfied for kK =23. Moreover, we can
see that at the twenty fourth iteration we have
calculated the zeros of f with accuracy less
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than10~* (see Table 2 with maximum values of error
estimates).

TABLE -2
Values of error estimates for Example 2
| iteration | max & | € max
20 0.164430 0.112940
21 0.000394 3.132168x10°°
22 1.593239x 10 5.076827x107"
23 7195780107  1.035585x107"
24 8277115107  1.370212x107"
In Figure 2, we present the trajectories of

approximations generated by the method (1) after 26
iterations with r, =5.

N

/

o

V7

/

Figure 2: Trajectories of approximations

EXPERIMENT OF DOCHEV AND BYRNEV

In 1964 Dochev and Byrnev [3] proposed the
following experiment:

Experiment .1 To investigate the convergence
behavior of the Weierstrass method (1) for all
polynomials of degree 4 with different integers
roots in [-10,10] and the initial guess

X =(=7.5,-2.5,25,75).

The number of the tested polynomials is
5985. After computerizing test they conclude that
for two of the polynomials the initial guess is not
suitable, since the Weierstrass operator is not
defined after the first iteration. The polynomials are
f(2) =(z+10)( z+5)( z=5)( z-9) and

f(2)=(z+9)(z+5)( z5)( z10).
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For every one of the others 5983 polynomials
Dochev and Byrnev proved that the Weierstrass
method converges. The
required to satisfy the stopping criterion in /, norm

I x®D — x® <10 7 9)

approximation guess

i.e. they used the condition (9) as criterion of
convergence for the Weierstrass method. The
average number of iterations required to satisfy the
stopping criterion is 41801/5983~ 7 .

Unfortunately their proof cannot be accept as strong
science proof of the experiment.

Our main purpose is to give strong science
proof of the experiment of Dochev and Byrnev using
Theorem 1 with our program, developing with
computer system Wolfram Mathematica.

The result of our experiment is:

e The initial guess is not suitable for two of
the polynomials (see Table 3);

e Theorem 1 guaranties the second order of
convergence for the Weierstrass method for the rest
5983 polynomials.

The average number of iterations required
to satisfy  the condition (7) is
26665/5983~ 4.

initial

TABLE -3
The Weierstrass method is not convergence

polynomial | initial guess |
f(2)= (zr0)(z+5)  x" =(-9.21875,-8.96875,
x(z-5)(z-9) 8.59375,8.59375)

f(2) = (z+9)(z+5)
x (z=5)(z-10)

x" = (-8.59375,-8.59375,
8.96875,9.21875)

MODIFICATION OF EXPERIMENT OF
DOCHEV AND BYRNEV

In this section we expand the experiment of Dochev
and Byrnev, namely with investigation complex
polynomial with randomly chosen initial guess.

Experiment 2 To investigate the convergence
behavior of the Weierstrass method (1) for all
polynomials of degree 4 with different complex
roots @ + i, where @ and S are integer numbers

such that a,f € [-2,2] and randomly chosen initial

guess x°.
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The number of the polynomials is 12650 .
All polynomials are tested with 1000 randomly
chosen initial guesses from the square
S=1{-2,2}x{-2,2} centered at the origin.

The result of our experiment is that
Theorem 1 guarantees the second order of
convergence for the Weierstrass method for the
every one of the investigated polynomials for every
one of the 1000 different initial guess.

In the Table 4 we present the average
E/(x). ¢(E,(x) and
number of the iterations for the tested initial guess.

values of the quantities

TABLE -4
Average values of quantities for the modified
Dochev and Byrnev experiment

average

average
number of

E ()

average

P(E £ (X))

initial
guess

iterations

1-100
101-200
201-300
301-400
401-500
501-600
601-700
701-800
801-900

0.060214244
0.059341226
0.059446438
0.059446417
0.059462812
0.059386827
0.059058719
0.059434172
0.059477533

0.321692975
0.313700698
0.314434758
0.314548326
0.314544624
0.313995092
0.312165984
0.314401586
0.314761018

7.938566008
7.246045566
7.713817578
7.577915065
7.629496443
7.241633202
7.830938345
7.452508559
7.401513834

901-1000 0.059427391 0.314378573 7.499177866
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