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T Data Envelopment Analysis is linear programming based procedure that can be used to assess Economic efficiency of

decision making units. If data uncertainty prevails where inputs and outputs are assumed to lie in intervals then economic

efficiencies also belong to intervals. In the presence of interval data we formulated two pairs of economic efficiency problems under weak and
strong optimistic and pessimistic view points. The economic efficiency intervals are shown as nested.
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1.

INTRODUCTION
Data Envelopment Analysis (DEA) is linear programming
based technique, implemented to measure efficiency scores
of decision making units (DMU). Input and output vectors
of firms that are in competition determine the production
possibility set whose boundary plays a predominant role, not
only yielding efficiency scores but targets to the interior
firms that are inefficient. The inefficient decision making
unit shall strive hard to reach the frontier travelling along the
path determined by a distance function. Choice of distance
function from its class depends on the objectives of the
production manger or the policy maker. Ex post production
possibilities do not allow input or output substitution, in this
case the production manager chooses radial distance
functions to reach the boundary of the production possibility
set. In short run, input or output substitution are not
possible, consequently the appropriate distance function is
radial distance function that allows input contraction or
output expansion along a ray. Ex ante production
possibilities allow movements along input or output
isoquant. In long run, input or output substitution is possible
and the policy maker chooses non-radial distance functions.
Among the technology sets the convex
production possibility sets (CCR, 1978; BCC, 1984) are
very widely used for efficiency measurement. The CCR
technology set is based on the axioms of inclusion, free
disposability, ray unboundedness and  minimum
extrapolation. It is a convex cone. The BCC technology set
is based on the axioms of inclusion, convexity, free
disposability and minimum extrapolation.

TBCC c TCCR

where TCCR and TBCC are the CCR and BCC
production possibility sets respectively. The boundary of
these production possibility sets is piecewise linear and an
arbitrary point of the boundary is denoted by,
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Varying A j any point on the boundary can be reached.
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@ A = 0, in CCR formulation and
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(ii) ﬂ’j >0 s Z ﬂj =1 in BCC formulation
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The frontiers of CCR and BCC production possibility sets
are determined by the inputs and outputs of extremely
efficient decision making units. The CCR and BCC
problems, respectively assume constant and variable returns
to scale. Following the axioms of CCR/BCC several non-
oriented distance functions were introduced. Very widely
implemented of these are the Russell non-radial slack based,
Hyperbolic Graph (Fare etal 1978) and directional
(Chambers et.al 1996) distance functions. The Russell non-
radial efficiency measure seeks component wise reduction of
inputs and / or component wise augmentation of outputs
before the distance function reaches the frontier. The slack
based efficiency measurement optimizes sum of slacks,
producing non-radial movements before frontier of the
production possibility set is reached. The Hyperbolic Graph
efficiency measurement seeks simultaneous reduction of
inputs and augmentation of outputs along hyperbolic path to
reach the boundary of the production possibility set. The
directional distance functions provide a wide class of
distance functions which include radial distance functions.

FACTOR MINIMAL COST FUNCTION

Data Envelopment Analysis (DEA) can handle the
assessment of not only the profitable, but also the non-
profitable organizations with comfortable ease. In addition
to input and output values, if input prices are available factor
minimal cost can be evaluated solving the following linear
programming problem (Fare et.al 1978):
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The ratio of potential cost to actual cost defines input cost
efficiency.

CH%PFQ%gQ

0<CE(y.p)<I

Q( Y, ,O) possesses the following properties:

P.1. Q(O, ,O):O . The minimal cost incurred to

produce null output vector is zero

P.2. Q( Y, 0) = (. No free lunch.

P3. Y > YV, = Q(ylﬂ p) > Q( Y, ,p) . Larger

output production incurs larger minimal cost.

P4 . Q( y,ﬂp) =1 Q( Y, ,O) . If prices change by
A , then minimal cost also changes by A . ps.

p=p=A% A=A x%.p).

Achievement of Cost efficiency (CE (U ,p) = 1)

requires movement along the isoquant which requires input
substitution. Input substitution requires change in technique
which is possible in ex ante production. Thus, achievement
of cost efficiency is a long run phenomena, that may be
achieved by an interior firm in three steps. In step one, in
short run, the entrepreneur should reach the variable returns
to scale frontier, in step two radial movement from variable
returns to constant returns to scale frontier by radial
reduction of inputs and in step three a point on the frontier at
which factor cost is minimized is reached, which is a non-
radial movement.

D C L(y.BCC)

L(».CCR)

A—>B (Radial movement to reach the BCC frontier)
B—>C (Radial movement to reach the CCR frontier)

C —> D (Non-radial movement to reach the
cost minimized targets of DMUs)

L (y,BCC ) : Input level set of BCC (cross section of
BCC PP set)

L (y,CCR ) : Input level set of CCR (cross section of
PP set)

PP ' : Cost line

The targets assigned by cost minimization are larger than the
radial input targets, for an inefficient decision making unit.
Achievement of these targets is possible only in long run. To
implement Data Envelopment Analysis, the decision making
units are assumed to combine similar inputs to produce
similar outputs. Following a property of linear programming
problem, an increase in the number of inputs and / or outputs
leads to increase in the efficiency of decision making units,
even if the input or output freshly augmented is irrelevant.
Therefore, the researcher shall take appropriate care while
the inputs and outputs are selected for the study. In distorted
data pictures, crisp data of inputs and outputs are not
available. Data Envelopment Analysis can handle data with
missing values or in the form of intervals with lower and
upper bounds specified for input and output variables. The
radial efficiency measurement of CCR and BCC
formulations can be extended to interval data. Two
production frontiers, namely, the optimistic and pessimistic
frontiers are visualized onto which the input and output
vectors of interior firms are projected. Optimistic frontier is
determined by upper bounds of output variables and lower
bounds of input variables. Pessimistic frontier is determined
by lower bounds of output variables and upper bounds of
input variables.

OPTIMISTIC AND PESSIMISTIC FRONTIERS

An optimistic view point is to produce outputs at upper
bounds, employing inputs at lower bounds. On the other
hand, a pessimistic view point is to employ inputs at upper
bounds to produce outputs at lower bounds. Thus, bounds of
inputs and outputs are projected onto optimistic and
pessimistic frontiers to arrive at efficiencies in bounded
form. The projections result in upper and lower bounds of
true efficiency scores. Following, we visualize two
situations. (Wang et.al 2005, Toloo et.al 2008, M.Venkata
Subba Reddy, 2015)

(1) Weak optimistic view poinWeak optimistic
producer assumes best performance by him, but
worst performance by his rivals and rivals
include him also, since his inputs and outputs are
augmented to the reference technology.

(ii) Weak pessimistic view pointunder this
hypothesis the entrepreneur assumes, worst
performance by him and best performance by his
rivals including himself.

Weak optimistic constraints:

n
v L
X<
Zijx/ <X
J=1
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(iii)

(iv)
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Strong optimistic view pointhe producer
assumes best performance by him and worst
performance by his rivals excluding himself.

Strong pessimistic view pointnder this
hypothesis the producer under evaluation
assumes worst performance by him and best
performance by his rivals excluding himself.

Strong optimistic constraints:

D AX] X <X

Jj#0
lejyj. + A, >V (33)
Jj#0

4,20,V
Strong optimistic constraints:
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4.  ECONOMICS EFFICIENCY - INTERVAL DATA:

Lt M =Ming ., i=12,...m
J

To measure economic efficiency, we formulate and solve the
following linear programming problem:

s.t
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Problem (4.1) can be alternatively expressed as,

EE =Max Zslyr[y,
u r=1
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5. WEAK OPTIMISTIC VIEW POINT

Let X, €

WEAK PESSIMISTIC VIEW POINT

m
2

st > oyu < E——
2
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FE, —Mox Sy, EE, <EE,

STRONG OPTIMISTIC VIEW POINT
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min min Every feasible solution of (5.3) is feasible solution of (5.2)
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THEOREM (3::  EE, <EE |
Every feasible solution of (5.2) is feasible for (5.1) Proof:
s
Optimal solution of (5.2) is feasible for (5.1) - L
EE, =Max Y y 4,
N r=1
Let U  be optimal for (5.2) then, we have
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6.
)

@
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1.

20.

21.

Every feasible solution of E E ( is a solution of CE U

EE, <CE,

CONCLUSIONS
We have established nestedness as follows

EE, < EE, < EE, < EEy,

The economic and cost efficiency are related as follows

EE, < CE,
EE, < CEy
» CE, < CEy
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