ORIGINAL RESEARCH PAPER	Pediatrics	Volume - 7 Issue - 2 February - 2017 ISSN - 2249-5555X IF : 3.919 IC Value : 79.96			
AND THE REPORT	COMPARATIVE STUDY OF RISK FACTORS IN THE INCIDENCE OF LOW BIRTH WEIGHT: A HOSPITAL BASED STUDY IN GOVERNMENT GENERAL HOSPITAL, VIJAYAWADA.				
KEYWORDS	Low birth weight, Anthropometry, Small for gestational age, Morbidity.				
Chan	Chandra Mohan.P Nishanth Madala				
Assistant Professor in Medical Coll	Assistant Professor in Dept of Pediatrics, Siddhartha Medical College, Vijayawada, IndiaSenior Resident in Dept of Pediatrics, Siddharth Medical College, Vijayawada, India				
Sreenivasa chowdary.J					
Senior Resident in Dept of Radiology, Siddhartha Medical College, Vijayawada, India,					
ABSTRACT In developing countries like india, 74 percent of india's population live in rural areas, most of the deliveries (70-90%) are conducted at home by traditional birth attendant and untrained relatives, where weighing facility does not even exist. The logistic					

conducted at home by traditional birth attendant and untrained relatives, where weighing facility does not even exist. The logistic problems such as a non availability of weighing machine is a big hurdle in recording the birth weight even though the deliveries are conducted by properly trained health personnel. As a result in many cases low birth weight babies remain undetected, which also reflects adversely upon the high risk approach to ensure better child survival. Hence it is imperative to identify the new born with low birth weight and to offer them adequate and need care instantly for survival.

Thus the present study was conducted with an aim to find out an alternative simple, cheap, reliable, acceptable method for identification of low birth weight babies that can be used by a person with little training.

INTRODUCTION

The fact that birth weight is the single most important marker for adverse perinatal , neonatal and infantile out come and most of the factors influencing low birth weight are preventable, created interest in the study of those factors. There is no indicator in human biology, which tells us so much about the past events and future trajectory of life as the weight of infant at birth¹. Low birth weight still remains a major health problem according to UNICEF, about 18 million infants are born with low birth weight globally every year.

Government of India, along with the strategies developed to achieve " Health for All" by the year 200, wished to decrease incidence of low birth weight to 10%. We have not achieved it even today. Infact incidence of low birth weight in the year 2013 is around 20% and about 5 to 7 percent in west. Over 80 percent of all neonatal deaths in both developed and developing countries occur among the low birth weight babies. Low birth weight is also a major determinant of malnutrition during infancy, because over 40% of low birth weight babies are malnourished at one year of age. In the developing countries, adverse perinatal and postnatal development of the child is associated with 3 interrelated conditions: Malnutrition, Infection and Unregulated fertility which are often due to poor socioeconomic and environmental conditions. Birth weight is an important determinant of success and duration of Brest feeding which is a well know protective asset against infant deaths in developed countries². It is estimated that in a developing country, low birth weight infants have 2-3 times increased risk of mortality due to infections compared to normal weight babies. Neurodevelopmental sequelae of birth asphyxia are three times in low birth weight babies compared to their normal weight counter parts^{3,4}. Low birth weight is the single most important factor determining the survival chances of the child. Many of them die during their first year. The infant mortality rate is about 20 times greater for all low birth weight babies then for other babies. The low birth weight, the lower is the survival chance. Many of them become victims of protein - energy malnutrition and infection. Low birth weight is thus an important guide to the level of care needed by individual babies. Low birth weight also reflects inadequate nutrition and ill-health of the mother. There is a strong and significant positive correlation between maternal nutritional status and the length of pregnancy and birth weight. A high percentage of low birth weight therefore points to deficient health status of pregnant women, inadequate perinatal care and the need for improved care of the newborn. Small for dates babies may remain stunned throughout life⁵. Small for dates babies are more vulnerable

to develop atherosclerotic coronary artery disease, hypertension and diabetes mellitus during adult life⁶³. As babies with birth weight of less than 2000 gms are more vulnerable, they deserve priority in admission to the special care nursery. The affordability of people to put their low birth weight babies in special care nurseries is poor and that raises the morbidity and mortality among low birth weight babies. Prevention of low birth weight is possible by interfering at various stages in the antenatal period. Approach towards preventable causes will be benefited with the reward of normal weight babies rearing of whom is easier and the result will be a healthier society. Babies with the birth weight less than 2500 gms irrespective of the period of their gestation are classified as low birth weight babies. These include both preterm and term small for dates babies. Human placenta can generally sustain growth of the foetus upto 42 weeks beyond which it becomes too senile or dysfunctional to support growth. In developing countries, due to nutritional constraints plateau in intra uterine growth is reached around 38 wks. So post maturity is an important cause of placental dysfunction3.

MATERIALS AND METHODS

- 1. Electronic Weighing Machine: To measure the baby weight.
- 2. Infantometer: To measure the length of newborn.
- 3. Flexible , non stretchable measuring tape: To record Anthropometric data.
- 4. Stadiometer: To record height and weight of mothers.
- 5. Mercury Barometer type B.P Apparatus.
- 6. Stethoscope.
- 7. Microscope.
- 8. Glass slides.
- 9. Test tubes.
- 10. Spirit lamp.
- 11. Benedict's Reagent.
- 12. Acetic Acid.

Departments involved in work are NICU and OBG/GYN : SMC Vijayawada.

The present study was conducted in neonatal intensive care unit, department of pediatrics and labour room, department of obstetrics, Siddhartha medical college government general hospital, Vijayawada. Neonates delivered in labour room were included randomly for analyzing maternal, obstetric and foetal risk factors for low birth weight and their respective mothers were interviewed using pre-designed Proforma. Anthropometric data of low birth weight babies was recorded. Maternal data of some normal birth weight babies is also collected for comparison.

Size of the sample and duration:

The present study included low birth weight of neonates and their mothers and normal birth weight neonates and their mothers. Anthropometric data of low birth weight babies was collected the data of 500 normal birth weight babies and their mothers and 500 low birth weight babies and their mothers were collected and analysed. The study was done from Jan 2013 to April 2015.

Sequence of study:

1. 500 low birth weight neonates, who were delivered in the labour room, obstetrics department, Siddhartha medical college Government General Hospital, Vijayawada, were taken up for study. Their anthropometric data was collected and their maternal parameters recorded.

2. 500 normal birth weight neonates were delivered in the obstetric department were taken up for study and their parameters recorded.

Methods of taking measurements

Taking anthropometry of new born

1. <u>Weighing the Neonate:</u> The neonate was weighed nude on electronic weighing machine within 1st hour of birth for accuracy of birth weight.

2. <u>Chest Circumference</u>: For measuring chest circumference the tape is placed at the level of the nipple in a plane at right angle to the spine and measurement is taken in the mid respiration.

3. <u>Mid arm Circumference</u>: The tape is placed firmly but without compressing the tissues around the upper arm at a point mid way between tip of acromion and olecranon process.

4. <u>Head Circumference</u>: The head circumference is measured by passing a tape over the occipital protuberance on the back, above the ears and the sides and supra orbital ridges in front.

Measuring the height of the mothers: Height of the mother was recorded using a stadiometer.

Weight of the mother:

Pre pregnancy (Conceptional) weight is equated to weight recorded at 12 weeks of gestation, considering negligible weight gain till 12 weeks of gestation. The weight gain from 12th week to term gestation represents the total weight gain during pregnancy. Pre pregnancy weight and weight gain during pregnancy are noted from obstetrical records. The weights were recorded by the post graduates in obstetrics department on a stadiometer.

- Age of the mother was noted.
- Socioeconomic status of the mother was noted. According to kuppuswamy's socio-economic status scale.

Methods Of Taking Other Data Like: Relevant history, Assessment of gestational age of new born, Classification of low birth weight babies, Small for gestational age(S.G.A), prematurity, Pregnancy induced hypertension(PIH), Anemia, Urinary tract infections(UTI) and Premature rupture of membranes(Prom).

SCORING SYSTEM FOR ASSESSMENT OF GESTATIONAL AGE AND PHYSICAL ASSESSMENT

CRITERIA	SCORE			
	0	1	2	3
PHYSICAL	Very thin	Smooth	Thick with	
a)Skin	and	medium	peeling and	
Texture test	gelatinous	thickness	cracking	
by		with	over hands	
inspection		superficial	and feet	
and pinching		peeling		

Volume - 7 | Issue - 2 | February - 2017 | ISSN - 2249-555X | IF : 3.919 | IC Value : 79.96

b) Lanugo	Nil or	Abundant	Thinning	Scanty
	scanty	Lunugo	Lunugo at	Lunugo with
			places	areas of
				baldness
c) Plantar creases	Nil	Faint red	Deep	Deep
Assess after		marks over	indentati	indentations
stretching the skin		anterior	ons over	throughout
8		half of sole	anterior	the sole
			1/3rd to	
			¹ / ₂ of sole	
D (11 (1	3.711	D (72 01 0010	D it
Brest nodule test by	NII	Breast	Breast	Breast tissue
holding the breast		tissue less	tissue 5-	more than 10
tissue between		than 5 mm	10 mm	mm
thumb and finger		on one or		diameter
		both sides		
d) Ear firmness	Pinna	Soft but	Some	Pinna firm
Assessed by	feels soft	some recoil	cartilage	with definite
palpation	and easily	is present	felt along	cartilage
	folded		the edge	throughout
	into		and recoil	and instant
	bizarre		is instant	recoil
	shapes			
e) Genitalia	Neither	At least one	At least	
(MALE)	testis in	testis in the	one testis	
(((((((((((((((((((((((((((((((((((((((scrotum	inguinal	is present	
	Serotum	canal and	in the	
		can be nu	scrotum	
		lled down	Scrotum	
		into the		
		sorotum		
		scrotum		
FEMALE	Labia	Labia	Labia	
	majora	majora	majora	
	widely	partly	completel	
	separated	cover labia	y cover	
	and labia	minora	labia	
	minora		minora	
	protrudin			
	g			
NEUBOLOGICAL	Arms and	Beginning	Stronger	Legs flexed
a)Posture: Observe	legs	of flexion of	flexion of	and
with infant quiet	evtended	hins and	legs and	abducted
and in sunine	extended	knees	some	while arms
nosition		arms	flevion of	completely
position		extended	arme	floved
1)	A			пелец
b) Arm recoil in a	No recoil	Arm	Arm	
supine infant. The	or only	returns to	briskly	
flexed forearm is	random	incomplete	returns to	
extended by pulling	movemen	flexion or	tull	
at hand then	ts	sluggish	flexion	
released.		response		
Popliteal	1800	1800 -	1500 -	1200 - 900
angle**with infant		1500	1200	
in a supine position,				
the thigh is held in				
the knee chest				
position by				
supporting the				
thighs with				
examiner's left hand.				
The leg is then				
extended by gentle				
pressure with				
examiner's finger				
placed behind the				
ankle and popliteal				
angle is measured.				
Index finger placed				

INDIAN JOURNAL OF APPLIED RESEARCH ₩ 223

ORIGINAL RESEARCH PAPER

c) Head lag with the infant	Compl	Partial	Able to	Brings head
lying supine position, the	ete	Head lag	maintain	anterior to
bay is grasped at hands	Head		head in	the body
and slowly pulled towards	lag		line with	
sitting position. During			the body	
the procedure, the				
position of the head in				
relation to trunk is				
observed.				
d) Glabellar tap.	Absen	Weak	Brisk	
Tap sharply at glabella	t	respons	response	
(midpoint between		е		
eyebrows) and look for				
closure of the eyes.				

Physical Score = 0-16, Neurological Score = 0-13, Combined Total Score = 0-29.

RESULTS Table 1 : Prevalence Of Low Birth Weight

Total Deliveries	10,842
No. of low birth weight babies	2716

The prevalence is 25.05%.

Distribution of low birth weight out of 500 low birth weight babies taken up for study 198 (39.6%) were premature and 302 (60.4%) were small for gestational age.

Relation between birth weight and maternal age : 267 (53.4%) out of 500 mothers of low birth weight babies, 226 (45.2%) out of 500 mothers of normal birth weight babies were aged < 20 years.

Relation between maternal Height and birth weight: 303 (60.6%) out of 500 mothers of low birth weight babies were < 145 cm in height, where as only 90 (18%) out of 500 mothers of normal birth weight babies were < 145 cm in height. So the association between low birth weight and maternal height of < 145 cm was found to be statistically significant.

Maternal weight and birth weight: 64(12.8%) out of 500 mothers of low birth weight babies and 5(1%) out of 500 mothers of normal birth weight babies were found to have preconceptional weight < 40 kg. the association between low birth weight and preconceptional maternal weight < 40 kg was found to be statistically significant.

Maternal weight gain during pregnancy and birth weight: maternal weight gain <7 kg was found in 119(23%) out of 500 mothers to low birth weight babies and 7(1.4%) out of 500 mothers of normal birth weight babies. The association between low birth weight and maternal weight gain of < 7 kg during pregnancy was found to be statistically significant.

Birth weight and parity: 295 mothers of low birth weight babies and 403 mothers of normal birth weight babies were primis grand multiparity was found in 3 mothers of low birth weight babies and 3 mothers of normal birth weight babies.

Birth weight and Hb% of mothers during pregnancy: out of 472 mothers of low birth weight babies all (100%) are anaemic where as 89 (20.05%) mothers of normal birth weight babies are anaemic. The association between anaemia (Hb% <10gms%) and birth weight of babies was found to be statistically significant.

Birth weight and severe anaemia of mothers: The relation between severe anaemia (Hb%, 7gms%) and birth weight of babies was observed, 118 (25%) out of 472 mothers who gave birth to low birth weight babies were found to have severe anaemia where as mothers of normal birth weight babies not found to have severe anaemia. The association between severe anaemia in mothers (Hb%

Volume - 7 | Issue - 2 | February - 2017 | ISSN - 2249-555X | IF : 3.919 | IC Value : 79.96

<7 gm%) and low birth weight of babies was found to be statistically significant.

Birth weight and PIH: 83(16.2%) mothers of low birth weight babies had pregnancy induced hypertension where as only 15(3%) mothers of normal birth weight babies had pregnancy induced hypertension. The association between low birth weight and pregnancy included hypertension was found to be statistically significant.

Birth weight and UTI: In the present study 38(7.6%0 mothers of low birth weight babies found to have urinary tract infection where as incidence of urinary tract infection as not observed in mothers of normal birth weight babies.

Other risk factors associated with LBW: 31 mothers of low birth weight babies had previous history of low birth weight babies. 23 mothers of v had premature rupture of membranes. 13 mothers of low birth weight babies had bleeding per vigainum.

|--|

S.	Parameter	Low birth		Normal birth		
NO		weight	weight babies		weight babies	
		Freque	Percen	Freque	Perce	
		ncy	tage	ncy	ntage	
1	Age <20 Years	267	53.3%	226	45.2%	
2	Height <145 cm	303	60.6%	90	18%	
3	Preconceptional weight < 40	64	12.8%	5	1%	
	kg					
4	Weight gain during	119	23.8%	7	1.4%	
	pregnancy <7 kg					
5	Maternal anaemia (Hb%	472	100%	34	7.8%	
	<10gms%)					
6	P.I.H	83	16.6%	15	3%	
7	U.T.I	38	7.6%	0	0%	

Table	3:	Relationship	between	chest	circumference	and	low
birthy	vei	ight.					

Chest circumference (cms)	No. of low birth weight babies	Mean birth weight (kgs)
<25	85	1.1935
25.1 - 26	15	1.65
26.1 - 27	107	1.95
27.1 - 28	169	2.05
28.1 - 29	92	2.14
29.1 - 30	32	2.3
>30	0	

Cut off point of chest circumference for grouping the babies < 2kg was found to be < 27cm. correlation coefficient "r" value for chest circumference 0.744.

Table 4: Relation between mid arm circumference and low birth
weight.

Mid-arm circumference (cms)	No. of low birth weight babies	Mean birth weight (kgs)
9.1 - 9.5	3	2.4
8.5 - 9	183	2.25
8.1 - 8.4	118	2.15
7.5 - 8	26	1.9
7 - 7.4	115	1.65
6.5 - 6.9	20	1.4
6 - 6.4	28	1.1
5 - 6	7	0.8
Total	500	

Cut off point of mid arm circumference for grouping the babies < 2kg was found to be < 8cm. correlation coefficient "r" value for chest circumference 0.615.

DISCUSSION

S.N	Author	Prevalance
0		of low birth
		weight
1	K.S.Nagi, S.D.Kandpal, M.Kukreti. (1998)7	23.8%
2	Trivedi et al 8	20.37~%
3	Kamaladas et al 9	24.6%
4	Mukesh K.Sharma, Dinesh Kumar, Anju Huria,	23.8%
	Pratiksha Guptha — Chandigarh (2007)10	
5	A Kolkata based study Paul B, saha I, Das	26.5%
	Guptha A, Choudari RN.	
6	National Family Health Survey-3	21.5%
7	Present study in Government General	25.05%
	Hospital, Vijayawada. (Jan 2013-April2015)	

The overall prevalence of low birth weight in our study is 25.05%. It is closely co-relating with prevalence of Kamal Das et al study (24.6%). The prevalence of low birth weight according to NFHS-3 was 21.5%. In the present study preterm babies account for 3 9.6% of total low birth weight babies which was similar to Deshmukh et al¹¹ study (4 1.2%) where as Mukesh et al study reported higher proportion of preterm (47.8%). In the present study all the mothers of low birth weight babies are anaemic and 25% of them were having severe anaemia (Hb% <7gms%). Other studies reported lesser incidence anaemia in mothers of low birth weight babies (Lt col G. Singh et al 18%, S.Ganesh Kumar et al¹²36%, Deshmuk et al 54%). In the present study 16.6% of mothers of low birth weight babies had pregnancy induced hypertension. Other studies show comparatively lesser incidence of pregnancy induced hypertension among the mothers of low birth weight babies. In the present study maternal height of <145cm was found in 60.6% of mothers of low birth weight babies which was similar to Deepa H Valankar¹³ studies. Other studies (Hirve ss, Ganatra B.R-29.5%, Ganesh Kumar et al 18%) reported lesser value when compared to present study. In the present study 12.8% mothers of low birth weight babies were found to have preconceptional weight <40kg which was lesser than other studies (Ganesh Kumar et al 33%, Munesh K. Sharma et al 50%, K.S. Negi et al 47.7%). In the present study maternal weight gain of <7kg during pregnancy was found in 23% of mothers of low birth weight babies which was statistically significant. Deshmukh et al also reported similar association. In the present study among the mothers of low birth weight babies 53.4% were aged <20 years which was higher when compared to previous studies. (G.Ganesh Kumar et al 14%, Lt col G.Singh et al 36.4%). But the value is more when compared to study of Deepa H Velankar (67%).

SURROGATE INDICATORS FOR IDENTIFYING LOW BIRTH WEIGHT

As low birth weight is associated with high neonatal mortality and morbidity and the non availability of weighing machine was a big hurdle in recording the birth weight in rural areas, mid arm circumference and chest circumference can be used to identify infants with low birth weight with a fair degree of accuracy. A mid arm circumference <8.7cm and chest circumference <30cm were used as cut off values to identify birth weight <2500gms. In India, a birth weight of 2000grns or less has been recommended as criterion for admitting infants into special care neonatal units. A mid arm circumference of <7.5cm and chest circumference of <27.5cm have a good predictive value in identifying this risk group. In the present study we tried to find out the cut off points for chest circumference and mid arm circumference to identify birth weight <2000gms and compare with other studies.

In the present study the cut off point of mid arm circumference to identify birth weight <2000gms is <8cm which was similar to that found in kapoor et al¹⁴ study, where as it was <7.5cm in the study conducted by Bhargava et al¹⁵. In present study the cut off point for chest circumference is found to be <27cms, the value is less than the cut off point found by bhargava et al (<27.5cm) and kapoor et al

Volume - 7 | Issue - 2 | February - 2017 | ISSN - 2249-555X | IF : 3.919 | IC Value : 79.96

(<28cm). In different studies estimates of cut off point for mid arm circumference to identify new born weighing < 2000gms varied between 7.5 and 8.5cm and cut off point for chest circumference varied between 27 and 27.5cm.

A chest circumference of < 29.5 to 30cm and mid arm circumference < 8.5 to 9cm are found to be cut off points for identifying new born with birth weight below 2500gms in different studies. Kapoor et al reported higher correlation coefficient identify low birth weight circumference (r=0.744) had circumference (r=0.6 15), that chest circumference (r0.8 164) had than mid arm circumference (r=0.75 10) to babies. In the present study showed chest has higher correlation coefficient than mid arm. All studies including the present study show that chest circumference and mid arm circumference were good predictors of birth weight. These measurements can be taken easily even by paramedical workers to detect the neonates at risk, so that they can be given special care and neonatal mortality and morbidity can he reduced.

CONCLUSION:

Low birth weight is the dominant risk factor for infant mortality and morbidity. The present study was done to know the prevalence of low birth weight babies and the various risk factors contributing to Low birth weight. The overall prevalence of Low birth weight in our study was 25.05%. The factors observed to be significantly associated with low birth weight in our study include maternal age < 20 years, maternal height < 145 cms, preconception weight < 40kg, maternal weight gain < 7kg during pregnancy and anaemia.

The results of this study suggest that for reducing the Low birth weight, maternal health programme should focus on maternal nutrition and nutritional education to facilitate better weight gain during pregnancy and discourage pregnancy at early age. Early identification of anaemia and antenatal iron folic acid supplementation services should be strengthened through good antenatal care.

The present study had identified cut off point of chest circumference <27 cms and mid arm circumference < 8 cms for babies weighing < 2000 gms. Chest circumference is a better surrogate marker for low birth weight than mid arm circumference. These simple and reliable indicators for Low birth weight can be introduced into existing system of health care for usage by paramedical workers to detect Low birth weight babies, so that they can be given special care and thus neonatal mortality and morbidity can be reduced.

REFERENCES

- 1. V. Ramalinga Swamy Adapted in the text book 'Care of the New born' -Meherban Singh.
- 2. Lang S breast Feeding special care babies. Mod Midwife Nov; 6(11): 34-5.
- 3. Care of the new born 1ST Edition-Meharban singh.
- Paul V K, Radhika S. Deorari, A K Singh, Singh M Nuerodeve lopmenta outcome of at risk nursery graduates. Indian J MedRes 1998, 107:113-117.
- Romagnoli C, Luciano R, Rizzo C, Alecci MC, Cafforio C, Pasquini R, Tortorolo G.The growth of the low-birth-weight neonate: assessment at 3 years Minerva Pediatr. 1993 Mar;45(3):75-81.
- 6. Barker DIP Foetal origins of coronary heart disease B MJ 1995; 311; 171-174.
- K.S.Nagi, S.D.Kandpal, M.Kukreti, The prominent factors associated with low birth weight January-March 2006;(8):31-34.
- Trivedi et al Epidemiology of low birth weight in Ahmedabad. Ind J Paed 1986; 53: 795-800.
- Kamaladoss T, Abel R, Sampathkumar V. Epidemiological correlates of low birth weight in rural Tamil Nadu. Ind J Paed 1992; 59:209-304.
- M Sharma, D Kumar, A Huria, P Gupta, Maternal Risk Factors Of Low Birth Weight In Chandigarh India Int journal of health, 2008;(8):1.
- J.S. Deshmukh et al, low birth weight and associated maternal factors in urban area. jan 1998;(35):33-35.
- Ganesh Kumar S, Harsha Kumar HN, Jayaram S, Kotian MS. Determinants of low birth weight : A case control study in a district hospital in Karnataka. Indian Journal of Pediatrics. 2010;77(1);87-9.
- 13. Deepa H Velankar, maternal factors contributing to low birth weight babies in an urban slum community of greater Mumbai. bombay hospital journal 2009;(51):1.
- S.K. Kapoor et al, Incidence of L.B.W in rural Ballab garh, Hyrana -Journal of Indian Paeditrics, 2001; 38: 271-275.
- Bhargava SK Determinants of perinatal and neonatal mortality and stratagies for their reduction in India. In proceedings of workshop on perinatal determinants of child survival New Delhi, Indian council of Medical research, 1989: 14-124.