# ORIGINAL RESEARCH PAPER

ENT



# **RETROSPECTIVE STUDY OF 100 CASES CORRELATION BETWEEN PRE-OPERATIVE COMPUTED TOMOGRAPHY AND OPERATIVE FINDINGS IN FUNCTIONAL** ENDOSCOPIC SINUS SURGERY

| KEYWORDS                                     | CT scan, Functional endoscopic sinus surgery, Maxillary sinus, Frontal sinus, Ethmoidal sinus, chronic rhino<br>sinusitis. |                                                   |  |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|
| Dr. V SUDHIR BABU                            |                                                                                                                            | Dr. SRILATHA K                                    |  |  |
| Associate Professor, Dept. Of ENT, ACSR GOVT |                                                                                                                            | senior resident Dept. Of ENT, ACSR GOVT Hospital, |  |  |

Hospital,Nellore

Nellore. Corresponding author

ABSTRACT Introduction: Chronic rhino sinusitis (CRS) is a wide spread inflammatory disorder of nose and paranasal sinuses and is one of the most common health complaints in individuals every year worldwide and its prevalence is rising<sup>1-2</sup>. The osteomeatal complex is the key area to pathogenesis of chronic rhinosinusitis<sup>3</sup>. Endoscopic surgery aims to eliminate disease in the primary site and allow resolution of the secondary infection in the larger sinuses<sup>4</sup>.pre-operative CT scan has proven invaluable to otolaryngologists<sup>568</sup>.In some cases of chronic rhinosinusitis there may be variations in findings between pre-operative CT scan and FESS. So, in this study we aim at correlation between pre-operative CT scan  $findings\, of an atomical\, defects\, and\, mucosal\, assessment\, and\, operative\, finding\, during\, endoscopic\, sinus\, surgery.$ 

Method: 100 patients with chronic rhinosinusitis were studied for one Year CT scan findings were correlated with intraoperative findings during functional endoscopic sinus surgery.

Result: it is more common in males and between age group 20-30, in mucosal disease maxillary sinusitis was better identified in CT, anterior and posterior ethmoid sinutitis was seen well in endoscopy. Structural abnormalities of middle turbinate were better identified in ESS.

Uncinate process attachment variations, agar, were better accessed on CT.In the assessment of sphenoethmoidal recess, accessory maxillary ostium, sphenoid sinus ostium, adenoid status, inferior turbinate abnormality, lateral sinus, DNS endoscopy is better. In delineating anatomical variations of sphenoid sinus, ethmoid roof, optic nerve course, internal carotid artery, olfactory fossa, frontal sinus pneumatization, vomer pneumatization, maxillary sinus hypoplasia, intrasinus mucosal disease CT is better.

Conclusion: CT is mandatory as preoperative evaluation in patients undergoing ESS, as it provides a road map to surgery. Sometimes the disease could be missed on CT but present on endoscopy in the same way findings seen on CT may be missed on endoscopy

# INTRODUCTION

Chronic rhino sinusitis (CRS) is a wide spread inflammatory disorder of nose and paranasal sinuses and is one of the most common health complaints in individuals every year worldwide and its prevalence is rising 1-2. Pathophysiology of sinus disease is related to three factors: 1. osteomeatal complex (patency of Ostia),

2. function of cilia

3. The quality of the nasal secretions.

Alteration in any one of these factors alone or in combination, can change the physiology and lead to sinusitis. The osteomeatal complex is the key area to pathogenesis of chronic rhinosinusitis3. The diagnosis of chronic rhino sinusitis relies heavily on the combination of clinical judgment, endoscopy of the lateral nasal wall and CT scan of the paranasal sinuses. Functional endoscopic sinus surgery (FESS) aims to eliminate the disease from its primary site and allow the resolution of secondary infection from the larger sinuses4. CT scan should be interpreted in the context of history and endoscopic examination as the prevalence of incidental mucosal changes in an asymptomatic population is quite significant. CT scan of PNS has become the standard diagnostic tool for the diagnosis of chronic rhino sinusitis5. It depicts the anatomical complexities of osteomeatal complex and relationship of sinuses with surrounding important structures in much simpler way, delineates the extent of disease, if possible the underlying cause6, clinical diagnosis of chronic rhinosinustis7 and acts as a roadmap for endoscopic sinus surgery.

There are various comparative studies on clinical symptomatology, histopathology, culture pattern, anatomical variations and mucosal disease by intranasal endoscopy and also on imaging studies including CT scan. But a clear correlative study between preoperative CT scan findings and findings in a case of CRS during functional endoscopic sinus surgery (FESS) is lacking. Both the investigative modalities are expensive and both, having their own merits and demerits. This study will help in having an insight into necessity, if either of two or both in combination is required in

Materials and method: Source of data:

Data for this study was collected from otorhinolaryngology department of ACSR, nellore who underwent CT scan of PNS and ESS Method of collection of data

Study design-prospective study Duration: one year EQUIPMENT - Dual slice CT scan SCANNING TECHNIQUE -

diagnosis of sinonasal pathologies.

The imaging protocol consists of acquisition of 2mm thin axial and coronal scans through the paranasal sinuses with special attention to osteomeatal units.

#### METHOD OF STUDY:

All patients presenting to ENT OPD with complaints related to nose and paranasal sinuses in 1years were examined clinically and investigated with CT scan. Patients diagnosed with chronic sinusitis were selected and planned for FESS. CT scan findings were discussed with consultant radiologist and anatomical variations or intrasinus mucosal disease were noted. After that patients underwent ESS, during which anatomical variations and intrasinus mucosal disease were noted. Both the findings were tabulated and correlated.

#### Inclusion criteria:

#### Age -15-70v

All cases of chronic sinusitis examined clinically and confirmed by pre-operative CT and ESS thereafter.

#### Exclusion criteria:

Age-below 15 and above 70y

Cases of rhino sinusitis which could be treated medically.

Patients with complicated sinusitis, aggressive fungal infection and infiltrating tumours.

Patients medically unfit for surgery.

# ORIGINAL RESEARCH PAPER

# STATISTICAL ANALYSIS:

Using various methods of statistical analysis like kappa, chi square, student't' tests etc. Results will be depicted in the form of tables, bar diagrams etc.

## Parameters for Study: OBSERVATION AND RESULTS

#### Table 1: Age wise Distribution of CRS

| 0            |              |            |
|--------------|--------------|------------|
| Age in years | No. of cases | Percentage |
| 0 - 20       | 6            | 6          |
| 20-40        | 73           | 73         |
| 40- 60       | 20           | 20         |
| >60          | 1            | 1          |

More common in 20-40y age group

# Table 2: Distribution of cases according to nature of symptoms

| Symptoms              | Number | Percentage |
|-----------------------|--------|------------|
| Headache              | 80     | 80         |
| Nasal discharge       | 80     | 80         |
| Nasal obstruction     | 60     | 60         |
| Facial pain(pressure) | 60     | 60         |
| Impaired smell        | 30     | 30         |
| Sneezing              | 70     | 70         |

Most common complaint seen was headache and nasal discharge

# Preoperative CT Scan evaluation:

# Table 3: Deviated Nasal Septum

| Findings | No. | Percentage |
|----------|-----|------------|
| Right    | 30  | 30         |
| Left     | 48  | 48         |

Left DNS was commonly seen

# Table 4: Middle turbinate hypertrophy on CT

| Middle turbinate | Right |    | Left |    |
|------------------|-------|----|------|----|
|                  | No.   | %  | No.  | %  |
| Typical          | 52    | 52 | 62   | 62 |
| Concha           | 32    | 32 | 28   | 28 |
| Paradoxical      | 16    | 16 | 10   | 10 |

Concha bullosa was commonly seen in 32 cases right and 28 left

# Table5: Concha bullosa distribution on CT

| Concha bullosa classification | Right |    | Left |    |
|-------------------------------|-------|----|------|----|
|                               | No.   | %  | No.  | %  |
| Bulbar cells                  | 6     | 6  | 4    | 4  |
| Lamellar cells                | 14    | 14 | 18   | 18 |
| True concha bullosa           | 20    | 20 | 12   | 12 |
| Tota                          | 40    | 40 | 34   | 34 |

True concha bullosa type was commonly seen

## Table6: Assessment of hiatus and infundibulum on CT

| Nasal discharge/post     | No  | rmal | Obstr | ucted | Narro | wed |
|--------------------------|-----|------|-------|-------|-------|-----|
| nasal drip               | No. | %    | No.   | %     | No.   | %   |
| Right hiatus semilunaris | 40  | 40   | 44    | 44    | 16    | 16  |
| Left hiatus semilunaris  | 24  | 24   | 48    | 48    | 28    | 28  |
| Right infundibulum       | 40  | 40   | 48    | 48    | 12    | 12  |
| Left infundibulum        | 32  | 32   | 48    | 48    | 20    | 20  |

Hiatus semilunaris and ethmoid infundibulum were obstructed commonly

### Volume - 7 | Issue - 1 | January - 2017 | ISSN - 2249-555X | IF : 3.919 | IC Value : 79.96

#### Table 7: Frontal sinus and frontal recess assessment on CT

| Frontal | Normal |    | Hypoplastic |    | Hyperpneumatize |    |
|---------|--------|----|-------------|----|-----------------|----|
| sinus   | No.    | %  | No.         | %  | No.             | %  |
| Right   | 68     | 68 | 12          | 12 | 20              | 20 |
| Left    | 56     | 56 | 16          | 16 | 28              | 28 |
| Frontal | Normal |    | Obstructed  |    | Narrowed        |    |
| recess  | No.    | %  | No.         | %  | No.             | %  |
| Right   | 68     | 68 | 18          | 18 | 14              | 14 |
| Left    | 66     | 66 | 24          | 24 | 10              | 10 |

Frontal sinus was normal in 68% of cases and frontal recess was obstructed commonly

#### Table 8: Ethmoidal fovea on CT

| Pattern        | No. of cases | Percentage |
|----------------|--------------|------------|
| 1-symmetrical  | 68           | 68         |
| 2-asymmetrical | 32           | 32         |
| a-right lower  | 18           | 18         |
| b-left lower   | 14           | 14         |

Ethmoid fovea was asymmetrical in 32 cases

#### Table 9: Sphenoid sinus configuration on CT

| Pattern      | No. of cases | Percentage |
|--------------|--------------|------------|
| Symmetrical  | 46           | 46         |
| Asymmetrical | 54           | 54         |

Sphenoid sinus was asymmetrical in 54% of cases

#### Diagnostic nasal Endoscopic Findings

#### Table 10: Deviated nasal septum and adenoids

| Findings            | No. of cases | Percentage |
|---------------------|--------------|------------|
| Adenoid hypertrophy | 8            | 8          |
| Right sided DNS     | 32           | 32         |
| Left Sided DNS      | 52           | 52         |

A denoid hypertrophy was seen in 8% cases and left DNS was commonly seen

#### Table 11: Middle turbinate assessment on endoscopy

| Middle turbinete  | Right |    | Left |    |
|-------------------|-------|----|------|----|
| Mildule turbinate | No.   | %  | No.  | %  |
| Typical           | 58    | 58 | 67   | 67 |
| Concha            | 32    | 32 | 27   | 27 |
| Paradoxical       | 10    | 10 | 6    | 6  |

Concha bullosa was seen in 32 cases on right and 27 on left

#### Table 12: Concha bullosa distribution on endoscopy

| Concha bullosa      | Right |    | Left |    |  |
|---------------------|-------|----|------|----|--|
| classification      | No.   | %  | No.  | %  |  |
| Bulbar cells        | 6     | 6  | 6    | 6  |  |
| Lamellar cells      | 12    | 12 | 16   | 16 |  |
| True concha bullosa | 22    | 22 | 12   | 12 |  |
| Total               | 40    | 40 | 34   | 34 |  |

 $True \, concha \, bullos a \, type \, was \, most \, commonly \, seen.$ 

## Table 13: Assessment of hiatus and infundibulum on endoscopy

| Findings           | Normal |    | Obstructed |    | Narrowed |    |
|--------------------|--------|----|------------|----|----------|----|
|                    | No.    | %  | No.        | %  | No.      | %  |
| Right hiatus       | 44     | 44 | 42         | 42 | 14       | 14 |
| Left hiatus        | 22     | 22 | 50         | 50 | 28       | 28 |
| Right infundibulum | 38     | 38 | 50         | 50 | 12       | 12 |
| Left infundibulum  | 30     | 30 | 52         | 52 | 18       | 18 |

INDIAN JOURNAL OF APPLIED RESEARCH ₩ 897

# ORIGINAL RESEARCH PAPER

Hiatus semilunaris and ethmoid infundibulum were obstructed commonly

### Table 14: Frontal recess assessment on endoscopy

| Frontal sinus | Norn | nal | Obstr | ucted | Narro | owed |
|---------------|------|-----|-------|-------|-------|------|
|               | No.  | %   | No.   | %     | No.   | %    |
| Right         | 64   | 64  | 24    | 24    | 12    | 12   |
| Left          | 66   | 66  | 22    | 22    | 12    | 12   |

Frontal sinus was obstructed most commonly

#### Table 15: Sphenoid ostium on endoscopy

| Side  | Oval | Slit | Rounded | Not seen |
|-------|------|------|---------|----------|
| Right | 44   | 6    | 4       | 46       |
| Left  | 46   | 4    | 6       | 44       |

Most of the cases sphenoid ostium was not seen, oval type was common among seen

# Table 16: Lateral sinus and accessory maxillary ostium on endoscopy

| Lateral sinus | Accessory maxillary ostium |        |       |         |        |
|---------------|----------------------------|--------|-------|---------|--------|
| Side          | Present                    | Absent | Side  | Present | Absent |
| Right         | 3                          | 97     | Right | 15      | 85     |
| Left          | 0                          | 100    | Left  | 13      | 87     |

Lateral sinus was present in 3 cases on right. Accessory ostium was present in 15 cases on right and 13 cases on left.

Radiologist's CT findings were correlated with surgeon's operative findings using formula for Kappa's agreement.

(% of observed agreement) - (% of expected agreement by chance) Kappa =100 - (% of expected agreement by chance)

#### Kappa value:

Below 40% is considered as poor correlation, Between 40% and 70% is considered as not a good correlation Between 70% and 80%> is considered as good correlation Above 80%> is considered as excellent correlation

# Table 17: correlation between CT scan findings and operative findings

| Category                | right   | Left    |
|-------------------------|---------|---------|
| DNS                     | K=0.950 | K=0.920 |
| Inferior turbinate      | K=0.957 | K=0.942 |
| Middle turbinate        | K=0.897 | K=0.901 |
| Concha bullosa          | K=0.965 | K=0.961 |
| Uncinate attachment     | K=0.881 | K=1.000 |
| Hiatus semilunaris      | K=0.935 | K=0.968 |
| Ethmoid fovea           | K=0.966 | K=0.935 |
| Agar nasi               | K=0.918 | K=0.915 |
| Haller cell             | K=0.884 | K=0.918 |
| Frontal recess          | K=0.881 | K=0.961 |
| Maxillary sinus         | K=0.911 | K=0.612 |
| Anterior ethmoid sinus  | K=0.692 | K=8.856 |
| Posterior ethmoid sinus | K=0.705 | K=0.673 |

All of them showed good correlation except maxillary sinus on left, anterior ethmoid sinus on right and posterior ethmoid sinus on left.

**Discussion:** our study was comparable in terms of age, symptomatology, middle turbinate hypertrophy, hiatus semilunaris, frontal sinus and recess, ethmoid fovea, sphenoid sinus, sphenoid ostium, lateral sinus and accessory maxillary ostium with sheetal et al<sup>5</sup>.DNS with priyanjal gautam et al<sup>9</sup>.concha bullosa with bolger et al<sup>10</sup> and ashok et al<sup>11</sup>.



### **CONCLUSION AND SUMMARY**

It was concluded that chronic rhinosinusitis is more common in males and commonly seen in age group of 20-40 years.

Obstruction of middle meatus due to gross abnormalities in infundibulum, Hiatus semilunaris, and frontal recess indicates intrasinus mucosal disease.

In mucosal disease maxillary sinusitis was better identified in CT, anterior and posterior ethmoid sinutitis was seen well in endoscopy. Structural abnormalities of middle turbinate were better identified in ESS.

In the assessment of accessory maxillary ostium, sphenoid sinus ostium, adenoid status, inferior turbinate abnormality, lateral sinus, DNS endoscopy is better.

In delineating anatomical variations of sphenoid sinus, ethmoid roof, olfactory fossa, frontal sinus pneumatization, CT is better.

CT is mandatory as preoperative evaluation in patients undergoing ESS, as it provides a road map to surgery. Sometimes the disease could be missed on CT but present on endoscopy in the same way findings seen on CT may be missed on endoscopy. Hence, CT and endoscopy are complimentary in assessment of anatomical variations of OMC and intrasinus mucosal disease.

#### **REFERENCES**

- Duarte AF, SolerRde C, Zavarezzi F. Nasal endoscopy associated with Paranasal sinus computerized tomography scan in the diagnosis of chronic nasal obstruction. Braz J Otorhinolaryngol. 2005; May-Jun; 71(3):361-3.
- $\label{eq:2.2} 2. \qquad Jones NS. CT of the paranasal sinuses: a review of the correlation with clinical, surgical and histopathological findings. Clin Otolaryngol A lied Sci 2002 Feb; 27(1):11-7.$
- GAS Llyod, VJ Lund, GK Scadding. CT of the paranasal sinuses and functional endoscopic surgery: a critical analysis of 100 symptomatic patients. J LaryngolOtol 1991; 105: 181-185pp
- Lynn D Cooke, Donald M Hadley. MRI of the paranasal sinuses: incidental abnormalities and their relationship to symptoms. J Laryngol Otol 1991;105:278-281pp
- Sheetal D, Devan PP, Manjunath P, Martin.P, Satish kumar K, Sreekantha,. CT PNS do we really require before FESS? Journal of Clinical and Diagnostic Research 2011; 5(2):179-181.
- Meyers RM and Valvassori G. Interpretations of anatomic variations of computer tomography scans of the sinuses: A surgeon's perspective. Laryngoscope 108:422–425, 1998.
- R. Zojaji MD, M. Mirzadeh MD, S. Naghibi MD. Comparative Evaluation of Preoperative CT Scan and Intraoperative Endoscopic Sinus Surgery Findings in Patients with Chronic Rhino sinusitis. Iran J Radiol 2008; 5(2):77-82.
- Graham SM and Nerad JA. Orbital complications in endoscopic sinus surgery using powered instrumentation. Laryngoscope 113:874–878, 2003
- Gautam P, Modwal A, Saboo RA Comparative Study of CT scan PNS with nasal endoscopy findings in chronic rhino sinusitis patients. Transworld Medical Journal 2014;2(1):14-17.
- Bolger WE, Butzin CA, Parsons DS. Paranasal sinus bony anatomic variations and mucosal abnormalities: CT analysis for endoscopic sinus surgery. Laryngoscope, 1991;101:56-64pp
- 11. Gupta AK, Gupta B, Gupta N, Tripathi N. Computerized Tomography of Paranasal sinuses: A Roadmap to Endoscopic Surgery. Clin Rhinol Int J 2012;5(1):1-10.