
1. Introduction
Hepatitis B is an infectious liver disease. It is characterized by 
inflammation of the liver and is caused by HBV. Infections of HBV 
occur only if the virus is able to enter the blood stream and reach the 
liver. HBVinfection is a global health problem and it is estimated by 
the World Health Organization (WHO), approximately one-third of 
the world population has been infected with HBV with serological 
evidence of past or present infection with HBV. Of the approximately 
2 billion people who have been infected worldwide, more than 350 
million (5–7% of the world's population) suffer from chronic HBV 
infection [1-5]. Approximately 15–40% of patients infected with HBV 
will develop life-threatening liver consequences (including cirrhosis, 
liver failure and hepatocellular carcinoma) resulting in 600,000 to 1.2 
million deaths per year due to HBV.India has over 40 million HBV 
carriers and accounts for 10–15% of the entire pool of HBV carriers of 
the world. Of the 25 million infants born every year in India, it is 
estimated that over 1 million run the lifetime risk of developing 
chronic HBV infection. Every year over 100,000 Indians die due to 
illnesses related to HBV infection [6- 8].HBVaffects many people and 
ranks behind HIV as the tenth leading cause of death in the world.

is infection has two possible phases: (1) acute and (2) chronic. 
Acute hepatitis B infection lasts less than six months. If the disease is 
acute, the immune system is usually able to clear the virus from the 
body, and will recover completely within a few months. Most people 
who acquire hepatitis B as adults have an acute infection.Chronic 
hepatitis B infection lasts six months or longer.

Most infants infected with HBV at birth and many children infected 
between 1 and 6 years of age become chronically infected. About two-
thirds of people with chronic HBV infection are chronic carriers. 
ese people do not develop symptoms, even though they harbor the 
virus and can transmit it to other people.e remaining one-third 
develops active hepatitis, a disease of the liver that can be very 
serious. More than 240 million people have chronic liver infections. 
About 600 000 people die every year due to the acute or chronic 
consequences of HBV[9].

In highly endemic areas, HBV is most commonly spread from mother 
to child at birth (vertical transmission), or through horizontal 
transmission (exposure to infected blood), especially from an 
infected child to an uninfected child during the first 5 years of life. e 
development of chronic infection is very common in infants infected 
from their mothers or before the age of 5 years.

An epidemiological model has become important tool and helps to 
capture infection or disease transmission by analyzing the spread 
and control of infectious diseases. Several mathematical models 
have been formulated on the HBVtransmission.  

A mathematical model is developed to eliminate the HBV in 
NewZealand in 2008 [10]. Simple mathematical model is used to 
illustrate the effect of carriers on the transmission of HBV [11]. An 
age structure model was proposed to predict the dynamics of 
HBVtransmission and evaluate the long-term effectiveness of the 
vaccination program in China [12]. A model to describe waning of 
immunity after sometime has been studied by a number of authors 
[13-16].

e powerful way to target epidemic outbreaks is the optimal 
control. It is based on defining a strategy to control the system and 
obtaining the best possibleoutcome. In particular, one can look for 
the optimal response for a vaccinationschedule that will minimize 
the disease burden while being mindful of the costs ofthe strategy. 
e starting point for the applications of optimal control theory to 
epidemic models has been studied [17-20]. A mathematical model 
has been developed to explore the impact of vaccination and other 
controlling measures of HBV infection. Optimal control theory is 
applied to study the infectiousdiseases [21-23].

One of the main reasons for studying HBV is to improve control and 
decreases the infectious individuals which include vaccination, 
education, screening of blood and blood products; and treatment. In 
this paper, we study the transmission dynamics of HBV infection 
considering the vaccination and treatment control policies where 
HBV infection is transmitted in two ways through vertical and 
horizontal transmission. e horizontal transmission can be 
reduced through vaccination control strategy for the susceptible 
individuals, while the vertical transmission can be reduced by giving 
treatment control for the infectious individuals. erefore 
vaccination and treatment policies play different role in controlling 
the spread of HBV.

In this study, we mainly focus on the changes in HBV by applying 
optimal control as vaccination and treatment for the model which 
explains the spread of disease in both horizontal and vertical 
directions. e optimal control is obtained by solving the optimality 
system of nonlinear ordinary differential equations with initial 
conditions. We take the controls as time dependent and obtain the 
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optimal control strategy to minimize the acute and carrier 
individuals and also the associated costs.

e paper is organized as follows. In section 2 optimal control HBV 
model is formulated. Section 3 is devoted to optimal control analysis 
of the model. Numerical illustrations have been discussed in section 
4.Finally section 5 deals with the conclusion.

2. Model Formulation
In the present paper, we consider an optimal control compartmental 
model based on the characteristics of Hepatitis B Virus model with 
vertical and horizontal transmission [24]. We have considered two 
optimal control strategies i.e. vaccination and treatment controls to 
prevent the spread of HBV. We divide the total population into five 
compartments, susceptible individuals
                                                                                     with control measures as    
           as vaccinated individuals and           as treated individuals. e 
flow chart of compartmental model is shown in Fig.1. e optimal 
control of HBV model with two control strategies is given by the 
following nonlinear differential equations 

Subject to the initial conditions,

In the above equations, we assume the population is stable with same 
birth rate and death rate as d and disease induced death rate is not 
considered. γ is the rate of exposed individuals becoming infectious. 1 

γ  is the rate at which exposed individuals move to acute infectious 2

class. γ  is the flow of carrier to Immunity class, b transmission 3

coefficient, k represents the carrier infectiousness to acute infection 
q is the proportion of acute individuals that become carrier, d0 

represent the loss of immunity rate and the individual become the 
susceptible again, h is the unimmunized children born to 
carriermothers, p represents the failure of immunization d(1 - p) 
measures the successful immunization ofnewborn babies, and the 
term dp(1 - h C(t) shows that thenewborns are unimmunized and 
become susceptible again.We assume that the total population size 
is equal to 1,e sum of the totalpopulation is S(t) + E(t) + A(t) + C(t) + 
V(t) + M(t) = 1. 

We ignore thefifth equation in system (1); so, the new model becomes

3. Optimal Control Analysis
In the above model we have considered two control measures that is 
vaccination and treatment controls.              is the  proportion of the 
susceptible individuals that are vaccinated per unit time. Here we are 
considering only proportion of individuals get vaccinated and some 
proportion becomes susceptible again.           is the proportion of 
chronic carriers getting antiviral treatment per unit time. Here the 
control functions                                   are bounded by Lebesgueintegral 
functions. Here, we investigate the prevention policies to minimize 

the total number of acute and carrier individuals keeping total cost of 
the policies low during the spread. e time-dependentoptimal 
prevention policies can be obtained by minimizing the following 
objectivefunctional: 

(3)

e costs of the control policies are nonlinear and take 
quadraticforms. Here the coefficients                                       respectiv-
ely, are the weight constants of the individuals and control 
measures.ey can be chosen to balance the units in the integrand 
and change the relative importance ofminimizing of infected 
individuals and intervention efforts.

Our goal is to find                 such that

Subject to system (1), where the control set is defined as 

3 Existence of control problem
In this section, we consider the control system (2) with initial 
conditions to show the existence of the control problem. Note that 
for the bounded lebesgue measurable controls and non-negative 
initial conditions, non-negative bounded solutions to the state 
system exists [25].In order to find an optimal solution, first we should 
find the Lagrangian and Hamiltonian for the optimal control 
problem. e minimal value of the Lagrangian is given by
                                                                           We define the Hamiltonian H 
for the control problem, where                        are adjoint variables:

For the existence of our control system (2), we state and prove the 
following theorem.

eorem 3.1 ere existsan optimal control                                        
such that  

Proof: to prove the existence of an optimal control we use the result 
in [26, 27, 38]. Here the control and state variables are non-negative 
values. In this minimizing problem, the necessary convexity of the 
objective function in          are satisfied. e set of all the control 
variables                  is also convex and closed by definition. e 
optimal system is bounded which determines the compactness 
needed for the existence of an optimal control. In addition the 
integrand in the functional (3)
                     is convex on the control set U. Also we can see that, there 
exists a constant r > 1 and positive numbers w , w such that1 2 

Because, the state variables are bounded, this completes the 
existence of optimal control.

In order to derive the necessary conditions, we use Pontryagin's 
Maximum Principle as follows. If (x,u) is an optimal solution of an 
optimal control problem, then there exists a non trivial vector 
function                                     satisfying the following equations:
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(5)

We now derive the necessary conditions that optimal control 
functions and corresponding states must satisfy. e following 
theorem, we present the adjoint system and control characteriza-
tion.

eorem 3.2 Let  S*, E*, A* and C* be optimal state with associated 
optimal control variables                            respectively for the optimal 
control problem. en there exist adjoint variables                                   
satisfying

With transversality conditions,

(7)

Furthermore the control functions u * (t), u * (t) are given by,1 2

(8)

Proof:  To determine the adjoint equations and the transversality 
conditions, we use the Hamiltonian H in equation (4). e form of the 
adjoint equations and transversality conditions are standard results 
from Pontryagin's Maximum Principle. We differentiate the 
Hamiltonian with respect to each state (respectively as stated above), 
then the adjoint system can be written as: 

With transversality conditions,

To get the characterization of the optimal control we have to solve 
the equations,

Foru                subject to the constraints, the characterization (8) can 
be derived and we have

en by standard variation arguments with the control bounds, we 
obtain the properties (8)

4.  Simulation results and Discussions.
is section discusses the numerical simulations of the optimality 
system and the corresponding results of varying the optimal controls 
u  and u   using the below parameter values.1 2

Numerical solutions to the optimality system composing the state 
equation (2) and adjoint equation (6) are carried out in MATLAB 
7.12.0 (R2011a). We have plotted Susceptible,exposed, acute, and 

carriers individuals with and without control by considering real 
parameter values given in Table 1, for the simulation purpose we have 
considered initial values
e weight constant of the objective functional are
                                                          e algorithm is the forward-
backward scheme; starting with an initial guess for the optimal 
controls. e state variables are then solved forward in time using 
Runge-Kutta method of the fourth order. en, those state variables 
and initial guess for the controls are used to solve the adjoint 
Equation backward in time with given final conditions (7), again 
employing a fourth order Runge-Kutta method. e controls are 
updated and used to solve the state and then the adjoint system. is 
iterative process terminates when current state, adjoint, and control 
values converge sufficiently [29, 30]. e results from our simulations 
are displayed in the following figures. We investigate and compare 
the numerical results in the following scenario. e vaccination 
control for the susceptible individuals and treatment control for the 
carrier individuals are used to optimize the objective functional. 

We assumed time in years. e time dependent optimal control 
stratesies are shown in Fig.3 and Fig.4, the control profile u  is at the 1

upper bound for some time and dropped gradually from upper 
bound to lower bound after 22 days and similarly the countrol profile 
u  is at the upper bound for some time and gradually drops to lower 2

bound after 11 days and suddenly increases to upper bound and 
remain at the upper bound till the final time. When both the control 
efforts are optimized i.e. vaccination control and the treatment 
control. In Fig.7, We observe that this control strategy results in 
significant decrease in number of carrier individuals compared with 
the case without control. Similarly, when compared to exposed and 
acute individuals there is also significant decrease in number of 
individuals when both the controls are optimized.

5.  Conclusion
In our present study, we performed optimal control analysis for the 
transmission dynamics of Hepatitis B virus model with effective use 
of vaccination and treatment control strategies. Using Pontryagin's 
Maximum Principle, the control system is analyzed to determine the 
necessary conditions for the existence of an optimal control. e 
control plots we developed indicate that the number of exposed, 
acute and carrier individuals decreased in the optimality system. We 
conclude that successful use of control measures has a significant 
impact in reducing the infectious diseases. e simultaneous use of 
two control policies is more effective at reducing the number of 
secondary infections than the use of single control policies.
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