Pancreas is a unique marvel of the body. It combines two diverse streams of function into a single structural entity. Computed Tomography with its higher sensitivity emerges as the imaging technique of utmost importance in evaluation of the nature and extent of pancreatic lesions. The purpose of the study was to compare and contrast the role of Ultrasound and CT in the evaluation of pancreatic lesions.

Methodology: This is a prospective study of 50 patients with pancreatic lesions. In the present study an attempt made to evaluate the efficiency of Ultrasound and CT in detecting and diagnosing pancreatic lesions. Ultrasound scan was performed and in C.T. scan evidence of enhancement pattern of lesion, local extension, vascular involvement are noted in addition.

Results: In this study included 50 patients suspected to have pancreatic pathology. Of these 40 patients are found to have pancreatic pathology on ultrasound / CT. CT detected 40 cases to be positive. Ultrasound did not detect 5 cases which are positive on CT. Out of 50 cases 11 cases are diagnosed as Acute pancreatitis, 13 cases as chronic pancreatitis, 9 cases as isolated pseudocysts, 6 cases as neoplasms, one case of pancreatic abscess. 10 cases are found normal.

Conclusion: The overall sensitivity and specificity for CT are 95% and 90% respectively. This study clearly indicates that CT is the method of choice for detecting a pancreatic lesion, its extent and defining its etiology.

KEYWORDS: ULTRASOUND, CT, PANCREATIC LESIONS.

MATERIALS & METHODS
This is a prospective study of 50 patients with pancreatic lesions. In the present study an attempt made to evaluate the efficiency of Ultrasound and CT in detecting and diagnosing pancreatic lesions and also to contrast between them. The appearance of pancreatic lesions on ultrasound and CT and their correlation with age and sex and different clinical settings are studied. The patients are referred to our department from various departments, mainly from the departments of Surgery, Medicine and Pediatrics with a clinical suspicion of pancreatic pathology.

The patients are referred from departments like Surgery, Medicine and Pediatrics. Most of the patients presented with signs and symptoms relating to the epigastric region and right hypochondrium with unexplained pain, vomiting, loss of weight and loss of appetite etc. In all the cases, a detailed clinical history is taken and thorough clinical examination is done. The blood and laboratory investigations and the clinical diagnosis are recorded in the proforma. The patients who are subjected for the study had clinical complaints like fever, nausea, vomiting, jaundice, loss of weight and loss of appetite etc, these patients are subjected to ultrasound and C.T. examination.

The ultrasound equipments used are Philips Envisor HD and Philips HD7. These ultrasound machines are equipped with a curvilinear probe of 3.5 MHz frequency and a linear probe of 7.5 MHz frequency.

TheComputed Tomography scanner is Siemens Emotion Single slice Spiral which is a third generation Machine with a smallest Slice thickness of 1mm.

In case of adult patients, the patients are kept nil orally 12 hours prior to the procedure with proper instructions being given for good bowel preparation to minimize the problem of bowel interface. In the pediatric age group instructions regarding bowel preparation are not insisted upon Supplemented regimens such as filling stomach with water are done.

Ultrasound scan is performed placing the patient in supine position and the scan is done in long axis of gland as well as perpendicular to the long axis. The patient is scanned in other positions such as prone,
oblique, erect, left and right lateral decubitus, and sitting partially upright whenever necessary.

Preliminary topogram was done for all the cases. Regularly 10mm slices are taken and 5mm or 2mm contiguous slices are imaged in the area of interest. Plain scans are performed after the oral administration of contrast and during the intravenous injection of a bolus of contrast. Intravenous contrast is administered in a bolus of 150 to 180 ml of 76% iodinated agent through a peripheral vein. The bolus is given in a uniphasic (2.5 ml/sec) or biphasic manner (2.5 to 5 ml/sec for a total of 50ml, then 1 ml/sec until a total 50 – 180ml is given). The scan sequence is initiated 30-40 seconds after the bolus injection has started. 2mm sections are used in the region of interest wherever necessary. Other associated findings are also noted. In all cases the ultrasound and CT are done and following features are noted. The glandular size, nature of lesion whether solid/cystic, whether diffuse/local involvement, whether there are multiple or single lesions and any necrosis, calcifications and duct pathology are noted. In C.T. scan evidence of enhancement pattern of lesion, local extension, vascular involvement are noted in addition.

RESULTS

In a present study included 50 patients suspected to have pancreatic pathology. Of these 40 patients are found to have pancreatic pathology on ultrasound / CT. CT detected 40 cases to be positive. Ultrasound did not detect 5 cases which are positive on CT.

Table 1 : Summary of cases

<table>
<thead>
<tr>
<th>S.No.</th>
<th>DIAGNOSIS</th>
<th>No.of. Cases</th>
<th>PERCENTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Acute pancreatitis</td>
<td>11</td>
<td>16%</td>
</tr>
<tr>
<td>2.</td>
<td>Chronic pancreatitis</td>
<td>13</td>
<td>26%</td>
</tr>
<tr>
<td>3.</td>
<td>Isolated Pseudocysts</td>
<td>9</td>
<td>18%</td>
</tr>
<tr>
<td>4.</td>
<td>Neoplasms</td>
<td>6</td>
<td>14%</td>
</tr>
<tr>
<td>5.</td>
<td>Pancreatic abscess</td>
<td>1</td>
<td>2%</td>
</tr>
<tr>
<td>6.</td>
<td>Normal</td>
<td>10</td>
<td>20%</td>
</tr>
</tbody>
</table>

In my study out of 50 cases 11 cases are diagnosed as Acute pancreatitis, 13 cases as chronic pancreatitis, 9 cases as isolated pseudocysts, 6 cases as neoplasms, one case of pancreatic abscess. 10 cases are found normal.

IV.Age profile of patients with pancreatic lesions

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Age group in year</th>
<th>No.of Cases</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>61-70</td>
<td>3</td>
<td>6%</td>
</tr>
<tr>
<td>2.</td>
<td>51-60</td>
<td>17</td>
<td>34%</td>
</tr>
<tr>
<td>3.</td>
<td>41-50</td>
<td>13</td>
<td>26%</td>
</tr>
<tr>
<td>4.</td>
<td>31-40</td>
<td>11</td>
<td>22%</td>
</tr>
<tr>
<td>5.</td>
<td>21-30</td>
<td>5</td>
<td>10%</td>
</tr>
<tr>
<td>6.</td>
<td>11-20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>0-10</td>
<td>1</td>
<td>2%</td>
</tr>
</tbody>
</table>

In my study 50 cases are divided in to seven groups in the following manner. Maximum number of patients are in the age group of 51-61 years with 17 cases (34%), next being 13 cases (26%) in age group of 41-50 years next is between 31-40 years with 11 cases (22%) 21-30 years with 10 cases (20%) 11-20 years with 5 cases (10%) 6-10 years with 3 cases (6%) 0-10 years with 1 case (2%) and in 20-70 years no case is found.

In my study CT detected 11 cases of Acute Pancreatitis out of 11 cases two cases are found negative on MR imaging. One case of acute pancreatitis which is found negative on CT is detected on further imaging. Ultrasound detected 7 cases to be positive for Acute Pancreatitis. Ultrasound did not detect two cases of Acute pancreatitis which are negative on CT are also not detected by ultra-sound. Out of 7 cases detected positive, two cases are found negative on MR imaging. So, the Sensitivity and specificity of US for acute pancreatitis are less than those of CT.

Out of 8 cases of acute pancreatitis, 3 cases (37.5%) are associated with necrotic changes, 4 cases (50%) with Pseudocysts, 5 cases with asces (62.5%), 3 cases with pleural effusion (37.5%) two cases with fluid collection in peripancreatic space, one with abscess. However no vascular anomalies are detected. Ultrasound and CT detected well various sizes of Pseudopancreatic cysts. In my study both ultrasound and CT had 100% detection rate.

Mass lesion and associated findings are detected well on ultrasound and CT, but the extent of lesions into peripancreatic fat planes and adjacent structures is confirmed on CT which is doubtful on ultrasound. CT detected 6 cases of neoplasms. One case which is not detected on CT & USG has been detected on MRI. So the detection rate for CT in case of neoplasms is 85%. Ultrasound also showed 85% detection rate, but was less accurate in delineating the extent of lesion.

DISCUSSION

In the present study 50 patients attending Naryanara Medical College & Hospital, Nellore, who are clinically suspected to have pancreatic pathology are evaluated with ultrasound and CT. The age and sex distribution of patient's in my study are similar to Eli. Karasawa et al 1983. Their study revealed that maximum numbers of patients are males with a sex ratio of 3:2 and maximum age group is after 50yrs.

On ultrasound out of 50 cases, 35 cases are found positive and 15 cases are found negative. Out of 15 cases, 7 cases are positive on further imaging 5 cases are found positive on CT (Two are acute pancreatitis, three are chronic pancreatitis) two cases which were also negative on CT are found positive. Thus the sensitivity of CT to detect pancreatic lesions is 83%.

Thus the specificity and sensitivity of ultrasound found in my study are closer to those found in the study conducted by various studies 13.

The echogenicity of pancreas is highly variable and depends upon the time of examination. In one study 1987 in his study of 50 cases with acute pancreatitis, revealed decreased echogenicity of the gland in 56%, wherein our study showed altered echotexture in 50% of cases.

The complications of acute pancreatitis are well detected on CT. CT differentiates between necrotic and non-necrotic areas. CTSI is a useful tool in assessing the severity and outcome of Acute Pancreatitis compared to APACHE II and Ranson scoring. (Ting-kai, Chi ming lee 2005).

In my study 2 cases with CTSI of 8 had bad prognosis. In a study conducted by Megibow in 1990, the findings are CTSI of 0 – 1 is associated – No mortality & morbidity,2 is associated with 4% morbidity. 2–10 is associated with 17% mortality and 92% morbidity.

In my study of chronic pancreatitis, alteration in size of gland (atrophy) is noted in 79.3% cases, duct dilatation in 71.3%, calcification in 79.3% and 23% showed pseudocyst formation. The calculi may be diffuse or confined to specific area. They are limited to the head or tail in about quarter of all cases and rarely solitary calculus can be identified.

In my study, pancreatic calcifications were noted in 10 patients (79.3%).

The study suggests that CT could be used in non-resolving cases of acute pancreatitis to detect areas of necrosis and to detect mild forms of pancreatitis in case of strong clinical suspicion. In case of neoplasms the study shows that CT is always superior to ultrasound in staging and knowing the resectability and extension of mass lesions.

The overall sensitivity and specificity for CT are 95% and 90% respectively. They are superior to sensitivity and specificity of US (83% and 88%) in detecting pancreatic lesions. This study concludes that CT is the initial and best modality for pancreatic lesions, having higher sensitivity (95% vs US 83%) and higher specificity (90% vs CT Vs US 88%) when compared to ultrasound. This study clearly indicates that CT is the method of choice for detecting a pancreatic lesion, its extent and defining its etiology.

REFERENCES

2. Ting Kai leung, Chi-Ming Lee 2005, Balthazar CTSE is superior to Ramson criteria and APACHE II scoring system in predicting acute pancreatitis outcome. World J Gastroenterol. 2005; 11(38) 6049-6052.
7. Satinder P Singh, Sushma vashist, Simha Mukhopadhyaya et al : Chronic Pancreatitis :
