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( ABSTRACT ) Fractional order SIR epidemic model is considered for dynamical analysis. The basic reproductive number is established

and an analysis is carried out to study the stability of the equilibrium points. The time plots and phase portraits are provided
for different sets of parameter values. Numerical simulations are presented to illustrate the stability analysis using Generalized Euler method.
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INTRODUCTION

Fractional Calculus is a branch of
Mathematics that deals with the study of integrals and
derivatives of non-integer orders, plays an
outstanding role and have found several applications
in large areas of research during the last decade.
Behavior of many dynamical systems can be
described and studied using the fractional order
systems. Fractional derivatives describe effects of
memory. This section presents some important
definitions of fractional calculus which arise as
natural generalization of results from calculus [3].

Definition 1The Riemann — Liouville fractional

Integral of order 0 < <1 is defined as
1
Jf(ty=——|(t—uf ' f(Wdu t>0.
() F(a)j( j ! f() dy

Definition 2.The Riemann — Liouville fractional
Derivative is defined as Df" f(t) = % J™f(D).
Definition 3The Caputo fractional derivative is

defined as D f(t)=J"™ % f(t).

GENERALIZED TAYLORS FORMULA AND
EULER METHOD

A generalization of Taylor’s formula that
involves Caputo fractional derivatives is presented in
[7]. Suppose that D" f(x)e C(0, & for
k=0,1, , n+tl,where O<a <1. Then we have

_ = Xia jo + (Dml)a f)(é,) ndHa
f(x)_ZF(ia+l) D1 T ml)a+l)X(

i=0

where 0<¢ <xVxe C(0,a]. For a=1, the
generalized Taylor’s formula reduces to the classical

Taylor’s formula.

In [6], ZM. Odibat and Shaher Momani
derived the generalized Euler’s method for the
numerical solution of initial value problems with
caputo derivatives. The method is a generalization of
the classical Euler’s method. Consider the following

general form of IVP; D” y(t)= f(t, y(t)), y(0) =y,
for O<a <1, O<t<a. The general formula for

Generalized  Euler’s Method  (GEM) is

Ioid
)= }’(tj)+r(a—+l) ft;.y)) (1

where j=0,1, ,n-l1. Itis clear that if & =1, then
the generalized Euler’s method (1) reduces to the
classical Euler’s method.

MODEL DESCRIPTION

Mathematical modeling is used to analyze,
study the spread of infectious diseases and predict the
outbreak and to formulate policies to control an
epidemic. We obtain fractional SIR epidemic model
by introducing fractional derivative of order
a(0<a <1) in the classical SIR epidemic equations.

In this paper, we study fractional order SIR epidemic
model with vaccination and treatment. The total
population N is partitioned into three compartments
which are Susceptible, Infected and Recovered with
sizes denoted by S(t), I(t) and R(t) [4].
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Variable Meaning
S Number of Susceptible Individuals at
time t
1) Number of Infectious Individuals at
time t
R(t) Number of Recovered Individuals at
time t
Paramet Meaning
ers
b Birth rate or Recruitment rate
d Death rate
1 Infectious Period
5
p Contact rate

Then the system leads to fractional equations
given by

D*S(t)=b—- AS(t) ¢)—dS(t)
D I(t) = BS(HI(t)-5 I(H)—dIt)  (2)
D*R(t) =51 (t) -dR(t)

where the arbitrary order « in the sense of Caputo
and O<a<1. Also we have D*N(t)=b—-dN(f).
Since N(t)=S(H+I(t)+R(t), R(f)can always be
obtained by the equation R(f) = N(£)—S(f)— I (t) .

We now consider the system of equations

D*S= b- B S dS

D*l = pSI-61-dl 3)
D“N = b—dN
with the following initial conditions

S0)=S§, I(0)=1,,N(0)=N,, where 0 <a <1.
EQUILIBRIUM POINTS
Consider the System[9]

Dfxl(t) =gl(X17X29X3)
Dsz(t):gz(X],Xz,X3) (4)
D5X3(t) =g3(XI,X2,X3)

with initial values X (0)= X, X(0)= X%,, X(0)= X

To evaluate the equilibrium points, let DI x (f)=0.
9,(X,%,%)=0, i=1,2,3. from which we can get
the equilibrium points X, x,,X; . The stability result

for the fractional order linear system is given below.

Lemma 1. [5] The fractional order autonomous
system D“x(t) = Ax(f), x(0) =x, where O0<a <],

xeR"and Aec R™"is

(a) Locally asymptotically stable if and only if
|arg(4,(A)| > %,(i =1,2, ,n).Wherearg(4 (A)
denotes the argument of the eigenvalue 4 of A .

(b) Stable if and only if

fara(A (AN 2 7.1 =12, 1),

Proposition 2.The system of equations (3) has a

disease free equilibrium point (g ,0,3 j

Proof: To obtain the equilibrium points we consider
D*S=0, D I=0, D N=0. In disease free situation,
that is, there is no infection / = 0. Therefore from the

system of equations 3) we get

b—dS=0= s:e.
d

Hence the Disease Free Equilibrium (DFE) Point is

(S LN= (S,O,S]. Also the Endemic Equilibrium

s+d d b
—(R-D.= |
5 ﬂ(ﬁf )dj

Pointis (S, I, N) :(

BASIC REPRODUCTION NUMBER

Basic Reproduction Number R, is defined as “ The

average number of secondary infectious caused by a
single infectious individual during theirentire
infectious lifetime”.

R,can be determined by Next Generation Matrix
(NGM) approach[8]. The Next Generation Matrix is

given by K=FV! where,
F:[ﬁs o}v{ﬁd —ﬂl}
0O 0 LS pBl+d
(BB b+ 0
K=FV' =| G+d)Bl, +d)+(BS)B ) ®)
0 0
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At Disease Free Equilibrium (DFE), § =§and

I, =0. Substituting in the Next Generation Matrix,

bp
we get K=FV™' =| d(5+d) . Since R,is the
0 0
most dominant eigenvalue of Next Generation
Matrix, we get R, = bs .
d(o+d)

Proposition 3.The Disease Free Equilibrium is
locally asymptotically stable ifO<R, <1 and

unstable ifR, >1.

Proof: Based on the system of equations (3), the
Jacobian Matrix is

Bl-d S 0
JSLN=| gl BSs-d 0 (6)
0 0 d

Suppose that R, <1, the Jacobian matrix of the
. b b
system of equations (3) at DFE (S, /, N) = (a,o,(—jj

b
d  -p> 0
Py

is givenby J(E)=| 0 ﬂg—é‘—d 0

The  eigenvalues  are A =4,=-d and
A= ﬂ§_5_ d. Hence the Disease Free

Equilibrium point of the
stable if

system is locally

asymptotically 0< R, <1land
V4

e > %

Proposition 4The system of equation8) (has an

endemic equilibrium point and asymptotically stable

if R, >1.

Proof: From the system of equations (3), we have

S:5+d,/:g([g_1)’ N=£. The  Jacobian
B B d

matrix for the Endemic equilibrium point is
-dR, -o6-d 0
JE)=|dR,-) 0 0
0 0 -d

The eigen  values are A, =—d and
—dR, 1 3
by == 15\/@1@) ~4d¢ +d)(R,—1). Hence

the Endemic Equilibrium point of the system is

locally asymptotically stable if R;,>1 and
V4

e >

NUMERICAL EXAMPLES

Numerical solution of the fractional order system is

h(1
)= S() + o 0= 50,1 )05 )
It =10,)+———(pS(t)It) -5 It )~di )
T(a+])
N = NG+ o (0= dNGE)

for j=0,1,2,
to analyze the qualitative properties of fractional
order differential equations since the equations do not

, k- . Numerical techniques are used

have analytic solutions in general.

Example 1Let us consider the parameter values
b=0.02, d=0.02, 3=0.01,6 =0.02 and h=0.1

with the initial conditionsS(0) = (0.95), (0) =(0.05)
and N(0)=(1.00),the fractional derivative order

a=0.9. For theseparameter the corresponding
eigen values are 4, =-0.02, 4, =-0.03 for E,.

Also |arg(4,,,)[=3.1416>14137 =0 = and

R, =0.25 <1 then the disease free equilibrium is

locally asymptoticallystable. See Figure 1.
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0.05 ‘ A, =-0.03,4, =-0.0433 forE,. Also
1
' T
0.04]% larg(4,,,)| =3.1416 >1.4137 =a 3 and
1
]
5003\ R, =0.1333 <1, then the disease free equilibrium is
= 1
2 \ locally asymptotically stable. See Figure2.
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Example 2.Let us consider the parameter values 0 3 N W
b=0.02, 0=0.03,=0.01,5=002, and h=0.1, O N _— '
with initial  conditions(S(0) = (0.95), 0) =(0.05) 0i63: 1
andN(0)=(1.00), the fractional derivative order 0 50 _ 1_(30 150 200
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Figure 2. Time Series of disease free equilibrium
E,and Different Fractional Derivatives (a'S) with

R, <1.

Example 3 Let us consider the parameter values
b=0.025, d=0.03,5=0.6,6=0.33, and
h=0.1with initial conditions
(S(0)=(0.95),1(0) =0.05) and N(0)=(1.00),

the fractional derivative ordera=0.9. For these
parameters the corresponding eigen values are
4 =-0.03, and A,, =-0.0208+0.0614i for E, ..

Alsolarg(4, ,,)|=3.1416 > 1.4137 =a % and

R, =1.3889 >1. Then the endemic equilibrium is
locally asynptotically stable. See Figure3.
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Figure 3. Time series and Phase diagram of endemic
equilibrium E, and Different Fractional Derivatives

(a's)ywith R >1.
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BIFURCATION

Bifurcation diagrams provide information about
abrupt changes in the qualitative behavior in the
dynamics of the system. The parameter values at
which these changes occur are called bifurcation
points. If the qualitative change occurs
neighborhood of an equilibrium point or periodic
solution, it is local bifurcation. In this section, we
give the bifurcation diagrams of the systems (3). See
Figure 4-7.
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[X]
el
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Figure 4. The bifurcation of Susceptible population,
Infected population with initial values
(S,, 1)=(0.95,0.05), b=0.8, d=0.2,5=0.1, h=1.0, 8 €[0.0,1.0]

and =0.5.

2 25 35

2 25 3 35

Figure 5. The bifurcation of Susceptible population,
Infected  population with initial values
(S,, h)=(0.95,0.05), b=4.0, d=02, F=0.12,5 =0.11, he[2.0,3.5]

and =0.5.
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Figure 6. The bifurcation of Susceptible population,
Infected  population  with initial values
(S,, 1,)=(0.95,0.05), b=12, d=0.4, B=0.45,5 =0.24, h=7.0

and a €[0.1,0.6].
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Figure 7. The bifurcation of Susceptible population,
Infected  population with initial values
(S, 1,)=(0.95,0.05), b=1.2, d=0.4, £ =0.45,6 =0.24, h=[6.0,9.0]
and ¢ =0.5.
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