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1 INTRODUCTION

Levine[11] introduced the concepts of semi-open sets and semi-
continuous in a topological space and investigated some of their
properties. Strong forms of stronger and weaker forms of continuous
map have been introduced and inves- tigated by several
mathematicians. In 2007 M.Caldas,S.Jafari and T.Navalagi [10]
introduced the concept of A irresolute maps. The notion of
irresolute functions [7] was introduced and investigated by M.Caldas
in2000.

Here we investigate some of their fundamental properties and the
connec- tions between these maps and other existing topological maps
are studied.

Throughout this paper (X,t), (Y,0) and (Z,n) (or simply X, Y and
Z) will always denote topological spaces on which no separation
axioms are as- sumed unless explicitly stated. Int(A),CI(A),IntA
(A), CIL (A),g*ACI(A) and g*Alnt(A) denote the interior of A,
closure of A, lambda interior of A, lambda closure of A, g* Lambda
closure of A and g* Lambda Interior of Arespectively.

2 Preliminary Definitions

Definition 2.2 A topological space(X,t)is said to be

1. ageneralized closed [15] if CI(A) C U, whenever A C U and U is
openinX.

2. asubsetA ofaspace Xis called A-closed [6]ifA=BNC,where Bisa
A-setand Cisaclosed set.

3. asubset A of X is said to be a g*A closed set [21] if Cl, (A)CU
whenever A C U, where U is semi open in X.

The complement of above closed sets are called its respective open
sets.

The g*A closure (respectively closure, A closure) of a subset A of X
denoted by g*ACI(A),(CI(A),CIL A)is the intersection of all g¥A
closed sets (closed sets, A closed sets) containing A.

Lemma2.3[3]

1. Every A-setis aA-closed set,

2. Every open and closed sets are A-closed sets.

Proposition 2.4 [21] In a topological space (X,t ),the following
properties hold:

1. Every closed setis g*A closed,

2. Every opensetis g*A closed,

3. Every Aclosed(Xopen) setis g*A closed(g*A open),

4. Union (intersection)of g*A closed (g*A open) sets is not g*A

closed(g*A
open),

5. InT' spaceevery g*A closed set (g*A open) is A closed(A open),

6. In Partition space every g*A closed(g*A open) set is g closed(g
open),

7. Inadoor space every subset is g*A closed (g* A open), and
8. InT1/2 spaceevery subsetis g*A closed(g*A open).
Definition 2.5

A function f:(X,1)——(Y,0) is called

1. [18]irresolute if for any semi open set S of (Y,6),f='(S) is semi open
in (X,7),

2. [1] geirresolute if the inverse images of g closed sets in(Y,c) are g
closedin (X,t),

3. [10] Airresolute ifthe inverse image of AopensetsinY are A open
in(X,1),

3 SPECIALFACTSON g“AIRRESOLUTE MAP
Definition 3.1

1. Amap f:(X,t)——(Y,0) is called g*A irresolute map if the inverse
image of each g*A closed setin Y'is g*A closed in X.

2. Amap f:(X,t)——(Y,0) is called contra g*A irresolute map if the
inverse image of each g*A closed setin Y is g* A openin X.

Definition 3.2
Atopological space X is said to be

1. g*A T, (resp g*A-T)) if for x ,y & X such that x =y there exist a
g*A- open set U of X containing x but noty or (resp and) a g*A-open
set Vof X containing y but notx.

2. g*A-Urysohn if forx ,y & X such that x =y there exista g*A-open
set U of X containing x and a g*A-open set V of X containing y such
that g*ACI(U)N g*ACI(V)= &

3. g*A normal if each pair of non empty disjoint closed sets can be
separated by disjoint g*A open sets.

4. ultra normal if each pair of nonempty disjoint closed sets can be
separated by disjoint clopen sets.

5. g*A Hausdroff or g¥*A T2 if for each pair of distinct points x and y
in X there exist g*A open subsets U and V of X containing x and y
respectively, such that UNV=ws.

6. g*A-ultra Hausdroff if for each pair of distinct points x and y in X
there exist g*A clopen subsets U and V of X containing x and y
respectively, suchthat UNV=mws.
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Definition 3.3
A function f:(X,1)——(Y,0) is said to be

1. g*A irresolute if for each x & X and each V & g*AO(Y,f(x)),
there exists U &g*AO(X,x) such that f(U)S V. Equivalently if the
inverse image of each g*A opensetinYis g¥*A openin X.

2. Quasi g*Adirresolute if foreachx & Xand each V& g*AO(Y,f(x)),
there exists U E g* AO(X,x) such that f(U) = g*ACI(V).

Theorem 3.4 Every g*A-irresolute function f:X——Y is quasi- g¥A-
irresolute.

Proof'is very clear as forany set VC g*ACI(V).

Theorem 3.5 IfYis g*A-T, and f:X——Y is g*A-irresolute injection
then X is g*A-T,.

Proof: Since f is injective,for any pair of distinct points
X,y E X f(x)=f(y). As Y is g*A-T, there exists USg*AO(Y.,f(x)) and
VEg*AO(Y,f(y)) such that UNV =& AS fis injective it follows that
f='(U))Nf='(V))=a. Since fis g*A irresolute,by definition 3.24 there
exists U, € g*AO(X,x) and V1 € g*AO(X,y) such that f(U,)SU
and f(V,) S (V). It follows that Ul S f~'(U)and V1 Sf-1(V). Hence
we getUINV1 S £~'(U))Nf-'(V))=s. Thus Xis g*A-T,.

Theorem 3.6 If Y is g*A-Urysohn and £:X——Y is quasi- g*A-
irresolute in-jection then Xis g*A-T,.

Proof: Since f is injective,for any pair of distinct points x,y €X,
f(x)=f(y). As Y is g*A-Urysohn there exists U g*AO(Y,f(x)) and
VEg*AO(Y.f(y)) such that g*ACI(U)Ng*ACI(V) = =. Hence
='(g*ACI(U)) N f-'(g*ACI(V)) = w&. Since fis quasi g*A irresolute,
there exists U, € g*AO(X,x) and V, Eg*AO(X,y) such that f(U1)&
g*ACI(U) and f(V1 )Sg*ACI(V). It follows that Ul&f-1
(g*ACI1(U)) and V, Sf-' (g*ACI(V)). Hence we get
U,NV, Sf(g*ACI(U))NF-' (g*ACI(V))=ws. Thus X is g*A-T,.

g*A-Urysohn spaces remains invariant under bijective M.g*A-open
function as seen from the following theorem

Theorem 3.7 Ifabijective function f:X——Y is M.g*A openand X
is g*A-urysohn then Y is g*A urysohn.

Proof: Let y,,y, €Y,y, =y,. Since fisbijective f~'(y,).f~'(y,)E
X and f~' (y,)=f-'(y, ). Then g*A-urysohn property of X gives the
existence of g*A open set U containing f~'(y, ) and a g*A open set V
containing f-'(y,) such that gt ACI(U)Ng*ACI(V)=w. As g*ACI(U)
is g*A closed set in X and f'is M.g*A open and bijective f(g*ACI(U) is
g*A closed in Y. US g*ACI(U) implies that f(U)<S f(g*ACI(U)).
Since f(g*ACI(U) is g*A closed in Y, we get g*ACI(f(U)) <
f(g*ACl(U)). Similarly we get g*ACI(f(V))E f(g*ACIL(V)).
Therefore by injec- tive of f, we have g*ACI(f(U)) N g*ACI(f(V)) S
fg*ACI(U)) N f(g*ACI(V))= flg*ACI(U) N g*ACI(V)] ==a. Thus
M.g*A-openness gives the existence of two g*A open sets f(U)
containing y, and f(V)containing y, such that g*A CI(f(U))N
g*ACI(f(V)) =&, which assures that Y is g¥ A-urysohn.

Conclusion:

Hausdorff space plays important role in the Baire category theorem in
General topology. This paper, defined and discussed some more
properties of g*A-Compactness, Furthermore, using these concepts
we have developed some important Theorem. In future, we may
implement these things into many research areas such as ideal
topology, rough set topology, soft topology, fuzzy set topology, digital
topology, etc.
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