INTRODUCTION
A mandatory requirement of root canal therapy is that the obturation and restoration of the tooth must seal the root canals both apically and coronally to prevent leakage and percolation of oral fluids and to prevent recontamination of disinfected canals. Apicoectomy (apicectomy/root-end resection) with retrograde obturation is a widely applied procedure in endodontics, when all efforts for the successful completion of orthograde endodontic therapy have failed. Failure of non-surgical endodontic treatment or non-surgical endodontic retreatment indicates the need for endodontic surgery to save the tooth. Ideal requirements of a root end filling material are 1-3.

1. Adhere and adapt to the walls of the root preparation
2. Prevent leakage of microorganisms and their products into the periapical tissues
3. Be biocompatible
4. Nonresorbable
5. Unaffected by moisture
6. Easy to prepare and place
7. Radiographically visible
8. To have anticaries activity
9. To be non-toxic, non-carcinogenic, dimensionally stable
10. It should not cause paresthesia
11. It should not cause additional pigmentation
12. It should not corrode or be electrochemically active
13. It should have bactericidal or bacteriostatic effect
14. It should stimulate cementogenesis
15. It should be well tolerated by periapical tissues with no inflammatory reactions

Numerous root end filling materials are there but no material has been found to fulfill all the properties for an ideal retrograde filling. Following are the commonly used root end filling materials. Amalgam has been first material of choice for a root end filling for many years. Other metals such as gold-foil, titanium screws and gallium alloy are also used.

Cements such as glass ionomers, Super EBA, IRM (zinc oxide-eugenol cements), carboxylate cements, zinc phosphate cements, calcium phosphate cement, Diaket, and mineral trioxide aggregate (MTA) are also used for retrograde filling. Composite resins and gutta-percha are also widely used. Rarely used Root-end filling materials includes laser, citric acid demineralization, teflon, ceramic inlay.

AMALGAM
Amalgam is one of the oldest and commonly used root end filling material. Farrar (1884) was the first one to place it as a root-end filling subsequent to resection. Later Rhein (1897), Faulhaber & Neumann (1912), Hippels (1914) and Garvin (1919) also used it for root-end fillings. It is easy to manipulate, has self sealing capacity, is radiopaque and insoluble in tissue fluids because of the formation of corrosion products. The preferred amalgam is high copper-zinc free. It remains as a standard to which other materials are compared. Clinical and histopathological studies show that amalgam, implanted subcutaneously and adjacent to bone is well tolerated by periapical tissues. 1-4

According to few studies, amalgam when used in combination with Amalgabond has a better sealing ability. Georgiev et al. reported a clinical case of paresthesia due to disseminated amalgam retrograde filling in the upper jaw and soft tissues. Studies by Tronstad et al and Abdul et al have found that the apical seal is significantly improved when varnish was applied to the cavity prior to the placement of a retrograde amalgam filling. Other comparative studies showed that freshly mixed conventional amalgams are very cytotoxic due to unreacted mercury with cytotoxicity decreasing as the material hardens. Scientists show concern about the free mercury and its potential toxicity. 5,6 Zhu et al suggested that amalgam had a higher cell toxicity to human periodontal ligament cells and human osteoblast-like cells than IRM and Super-EBA.

Amalgam has few limitations which includes production of corrosive byproducts. 7,14 Others include possibility of mercury and tin contamination, moisture sensitivity, for retention need of a retentively designed cavity preparation, staining of hard and soft tissues and non resorbable scattered particles which may be difficult to retrieve. 7,15

Also, it does not seal the root end three-dimensionally and does not prevent the leakage of microorganisms and their products in the periapical tissues. 16,17 Many clinical studies have shown poor outcomes with amalgam root-end fillings and amalgam can no longer be considered as the ideal root-end filling material. 7,17 Due to these reasons in recent times, amalgam is not a favourite material for root end filling.

GUTTA-PERCHA
Another most commonly used material for retrograde filling is gutta percha. It is known to have a poor sealing ability as it has to be used with a sealer during root canal obturation. A study observed that heat sealed gutta-percha provides a better seal as compared to Amalgam, IRM and Super EBA. 18 It is reported that a better seal can be obtained with thermo- plasticized gutta-percha than amalgam with and without varnish. 19,20,21 It is nonresorbable, biocompatible and has good handling properties but at the same time its moisture sensitive. Also there is a tendency for its margins to open when the canal root interface is cut, heated or burnished.

ZINC OXIDE EUGENOL CEMENTS
Because of their more solubility that caused periapical tissue irritation, these materials were to subjected to various modifications. The most commonly used zinc oxide cements are Super EBA and IRM. Super EBA is 60% zinc oxide, 30% alumina, 6% natural resin, with the liquid being 37.5% eugenol and 62.5% or 70-ethoxybenzoic acid. IRM is 80% zinc oxide, 20% polyvinylmethacrylate, with the liquid being 99% eugenol. They have excellent sealing capability and are non toxic after setting. But are moisture sensitive and cause initial tissue...
irritation. The use of Super EBA for root-end filling material was first suggested in 1978. The collagen fibers grew over Super EBA root-end fillings and claimed the material to be bio compatible. Back et al compared the peripical tissue responses and cementum regeneration in response to three widely used root-end filling materials, amalgam, Super EBA, and Mineral Trioxide Aggregate (MTA) and found that Super EBA was superior to amalgam as a root-end filling material. Torabinejad M et al examined the tissue reaction of implanted Super-EBA and MTA in the mandibles of guinea pigs. Two bony cavities with-out implanted materials were left to heal and used as negative controls. The presence of inflammation, predominant cell type, and thickness of fibrous connective tissue adjacent to each implant was recorded. Based on these results, it seems that both Super-EBA and MTA are biocompatible.

Pitt Ford TR et al examined also the effect of IRM root end fillings on healing after replantation in 21 molar teeth in monkeys and concluded that the tissue response to root-end fillings of IRM in replanted teeth was less severe and less extensive than that to amalgam. Harikaran et al evaluated the sealing ability of three different materials for retrograde filling and revealed that the dye leakage scores were lowest in IRM. The sealing ability of IRM was significantly better than amalgam and glass-ionomer. Trope et al in a histological study confirmed the good tissue response to both EBA and IRM.

CAVIT
It is a temporary filling material made of zinc oxide and zinc sulphate without eugenol. Evaluation of the sealing ability of amalgam, Cavit and glass-ionomer cement was done to reveal that Cavit had a better seal than amalgam but the seal was inferior to that of amalgam. Cavit is soft when placed in the tooth and sub- sequently undergoes a hygroscopic set after per- meation with water, giving a high linear expansion (18%). This rationalizes its use as a root-end filling material. Cavit has been shown to exhibit greater leakage than IRM. It is not proved that it is toxic or non-toxic that is why using Cavit is not recommended as retrograde filling.

GLASSIONOMER CEMENT
Glass ionomers are formed by the reaction of calcium–aluminosilicate glass particles with aqueous solutions of polyacrylic acid. It bonds physico-chemically to dentine. These cements are easy to handle and does not cause any adverse histological reaction in the periapical tissues.

According to MacNeil K et al sealing ability of GIC was adversely affected when the root end cavities were contaminated with moisture at the time of placement of cement. A study used light cure, resin reinforced GIC as a retro- grade filling material. It showed least microleakage due to less moisture sensitivity, less curing shrinkage and better penetration of polymer into dentin surface. It is reported that newer glass ionomer cements containing glass-metal powder have less leakage and showed no pathologic signs. One of the disadvantage of glass ionomers is the root preparation must be absolutely dry and seal is adversely affected by moisture and low pH.

COMPOSITE RESIN
Composite resins are used as a retrograde filling with a bonding agent. Conventional composite resins contain a polymerizable organic matrix, inorganic fillers and a silane coupling agent. TEGDMA, bis-GMA and UDMA have been detected in aqueous extracts and formaldehyde can liberate over a long time period. These components may be the reason why the material exhibits highly anti-bacterial effects against P.gingivalis, P.intermedia, Pendodontalis.

Rud et al have reported on several prospective and retrospective human usage studies in an attempt to evaluate the adaptability of composite resin combined with a dentin-bonding agent as a retrograde filling. They applied Gluma in vivo to cases requiring periradicular surgery and compared it to cases treated with root-end amalgam fillings. Gluma exhibited complete healing in 74% of the cases as compared to amalgam healing only in 59% of cases. Another study demonstrated excellent long term clinical success with the use of retroplast composite resin and Gluma bonding agent. Using composite resin for retrograde filling allows for more conservative preparation of the root-end cavity. Slightly concave root-end preparations is suggested followed by bonding to the entire resected root end. They are sensitive to moisture than conventional glassionomer cements.

TITANIUM SCREWS
A study of titanium screws as retrograde fillings was done to compare it to amalgam. Bacterial penetration was seen readily on the first day in the amalgam fillings but bacteria penetrated the titanium screw seal after 2 to 7 days. Titanium screws appeared to produce a tighter seal than amalgam.

DIACET
Diaket is a root canal sealer but in thicker consistency is used as a root- end filling material. As a root-end filling, diaket is shown to have superior sealing qualities when compared to amalgam. Diaket also shows a good healing response characterized by bone apposition, reformation of periodontal ligament and deposition of new cement.

GOLD FOIL
The use of gold foil as a root-end filling material was first reported by Schuster in 1913 and Lyons in 1920. It exhibits perfect marginal adaptability, surface smoothness and tissue biocompatibility. Implants of gold foil produce only mild tissue reaction. Gold Foil was found to be the best apical sealing material as far as the improvement in biting force is concerned. When compared to IRM, composite resin, amalgam and glass ionomer, gold foil was least toxic. The routine use of gold foil as a root-end filling material does not appear practical because it requires a moisture free environment, careful placement and finishing.

CALCIUM PHOSPHATE CEMENT (CPC)
CPC is mixture of two calcium phosphate compounds, one acidic and the other basic. It is commonly known as hydroxyapatite cement and is composed of tetracalcium phosphate and dicalcium phosphate reactants. These compounds, when mixed with water, react isothermally to form a solid implant composed of carbonated hydroxyapatite. It is as radio opaque as bone. When combined by dissolution in moisture, even blood, CPC sets into hydroxyapatite. It demonstrates excellent biocompatibility, does not cause a sustained inflammatory response or toxic reaction. An in vivo monkey study found new bone formation developing immediately adjacent to CPC.

MINERAL TRIOXIDE AGGREGATE
Mineral trioxide aggregate (MTA) was developed by Torabinejad at Loma Linda University, CA, USA in 1993. MTA cement is commercialized in two different versions, grey and white (Grey and White MTA). The main difference between the two versions is the highest concentration of iron oxide in the Grey MTA, which, according to several studies, is the main responsible for dental tissues staining when the material is used. It consists of calcium and phosphorous ions, derived primarily from tricalcium silicate, tricalcium aluminate, tricalcium oxide and silicate oxide. Its pH when set is 12.5 and its setting time is 2 hours and 45 minutes. The compressive strength of MTA is reported to be 40 MPa immediately after setting and increases to 70MPa after 21 days.

Several dye leakage studies have demonstrated the fact that MTA leaks significantly less than other root-end filling materials. Fischer et al. determined the time needed for Serratia marcescens to penetrate a 3 mm thickness of zinc-free amalgam, Intermediate Restorative Material (IRM), Super-EBA, and MTA when these materials were used as root-end filling materials. The number of days required for S. marcescens to penetrate the four root-end filling materials and grow in the phenol red broth was recorded and analyzed. They reported that most of the samples filled with zinc-free amalgam leaked bacteria in 10 to 63 days. IRM began leaking in 28 to 91 days. Super-EBA began leaking in 42 to 101 days. MTA did not begin leaking until day 49. At the end of the study, four of the MTA samples had not exhibited any leakage. Statistical analysis of the data indicated Mineral Trioxide Aggregate to be the most effective root-end filling material against penetration of S. marcescens.

Apaydin et al compared the effect of fresh MTA with set MTA on hard-tissue healing after peri- radicular surgery in the root canals of 24 mandibular premolars in four 2-year-old beagle dogs. They found that there is no significant difference in the quantity of cementum or osseous healing associated with freshly placed or set MTA when used as root-end filling material. Lindeboom et al performed a randomized clinical prospective study to evaluate the application of MTA and IRM as retrograde sealers in surgical endodontics. One hundred single-rooted teeth were surgically treated. After randomization, MTA or
Ceramicrete, Bioaggregate and White MTA was done to study the material. A comparison of the root-end seal achieved using matrix phase. Its mechanical properties were improved by adding to form a potassium magnesium phosphate hexahydrate ceramic radioopaque fillers. This material is biocompatible and radiopaque and also the use of an acidic MgHPO4. H2O solution as a conditioner to remove the smear layer which is believed to have improved the adaptation of ceramicrete with the dentin. On immersion of the set ceramicrete material in a Phosphate containing fluid (PCF), there was formation of Dicalcium phosphate dihydrate (DPDC) or hydroxyapatite crystalline structures, which is indicative of its bioactivity.

NEWER MATERIALS

CASTOR OIL POLYMER

It is a biopolymer consisting of a chain of fatty acids. It is shown to be biocompatible, non-toxic and easy to handle.

CERAMICRETE

A study investigated the cytotoxicity and the effect of Ceramicrete on Mineral-associated gene expression in osteoblast cells. In a study done to compare the cytotoxicity of ProRoot MTA and DiaRoot Bioaggregate, Ceramicrete showed a significantly better inflammatory reaction and foreign body reaction than the MTA group. Bioaggregate appeared to be more biocompatible than MTA. An in vitro comparative study of the sealing ability of Diadent Bioaggregate and other root-end filling materials (Gutta-percha, amalgam, IRM, White MTA) was done using methylene blue dye penetration technique. The results showed that microleakage was significantly less in Ceramicrete when compared to amalgam, IRM and White MTA.

BIOAGGREGATE

Bioaggregate is a modification of MTA. It is a new bioceramic root repair and root-end filling material composed of a powder component consisting of tricalcium silicate, dicalcium silicate, tautalanum pentoxide, calcium phosphate monobasic and amorphous silicon oxide and a liquid component of deionized water. The effect of Bioaggregate and MTA on human pulp and PDL cell growth was determined by examining the cells grown on this cement using a phase microscope. An inhibition zone was detected in the pulp and PDL cell culture grown with MTA. Bioaggregate showed no inhibition zone around the material. Bioaggregate was found to be non-toxic to human pulp and PDL cells.

BIOACTIVE MATERIALS

BIOACTIVE MATERIALS

Bioaggregate showed a seal slightly less than MTA but, higher than Calcium phosphate cement and Biodentine MTA. Three materials are bioactive. An in vitro study to compare the sealing ability of MTA, Calcium phosphate cement and Biodentine MTA showed the highest seal and the least dye absorbance. Biodentine showed a seal slightly less than MTA but, higher than Calcium phosphate cement.

CERAMICRETE

This material has hydroxyapatite powder and cerium oxide radiopaque fillers. This material is biocompatible and radiopaque and is also known to release calcium and phosphate ions during setting. It is a self-setting phosphate ceramic that sets using an acid-base reaction to form a potassium magnesium phosphate hexahydrate ceramic matrix. Its mechanical properties were improved by adding calcium silicate whiskers to produce a phosphosilicate ceramic material. A comparison of the root-end seal achieved using Ceramicrete, Bioaggregate and White MTA was done to study the prevention of glucose penetration. Both Bioaggregate and Ceramicrete showed similar sealing ability to MTA, with Ceramicrete showing significantly better results than Bioaggregate.

An in vitro study was done to evaluate the Ceramicrete based material as a root-end sealing material. This study used a ceramicrete-based powder mixed with deionized water. This study showed that ceramicrete had a radioopacity similar to root dentin, and the sealing ability was higher compared to a SuperEBA and ProRoot MTA group. This excellent apical seal was attributed to its impervious nature and also the use of an acidic MgHPO4. H2O solution as a conditioner to remove the smear layer which is believed to have improved the adaptation of ceramicrete with the dentin. On immersion of the set ceramicrete material in a Phosphate containing fluid (PCF), there was formation of Dicalcium phosphate dihydrate (DPDC) or hydroxyapatite crystalline structures, which is indicative of its bioactivity.

ENDOSEQUENCE (ERRM)

It is a new bioceramic material consisting of calcium silicates, monobasic calcium phosphate, and zirconium oxide. Its is radiopaque, biocompatible, bioactive and its high pH contributes to its antimicrobial activity. ERRM has been shown to have negligible cytotoxicity and capability to induce cytokine expression similar to MTA. The bioactivity was tested in a study by exposing the set material in phosphate-buffered saline. There was precipitation ofapatite crystalline structures, which is indicative of its bioactivity.

IROOT BP PLUS

iRoot BP Plus (Innovative BioCeramix Inc., Canada) is a synthetic water-based bioceramic cement. It is available in ready to use premixed form and has a biocompatibility similar to MTA.

GENEREXA

Generex A (Dentsply Tulsa dental, USA) is a calcium silicate based cement and is similar to MTA but the handling properties are different. Instead of water the cement is mixed with a special gel. The final consistency is similar to IRM like dough and easy to manipulate.

CAPASIO

Capasio (Primus Consulting, Bradenton, FL) is a calcium-phosphoaminonitrate-based cement that uses a novel setting reaction and has demonstrated similar or improved physical characteristics such as setting time, radiopacity, compressive strength, pH, and washout resistance. Such favorable properties make Capasio a potential root-end filling material; however, evidence is still lacking to justify the use of this material as an improvement over MTA.

EPOXY RESIN AND PORTLAND CEMENT (EPC)

Epoxy resin and Portland cement (EPC) is made from a mixture of epoxy resin and Portland cement. In vitro studies show that it has a good radio opacity, short setting time, low microleakage, and low cytotoxicity and can be used a root end filling material.

ENDOBINDER

EndoBinder (Binderware, Brazil) is a new calcium aluminate cement. During production, free magnesium oxide and calcium oxide are eliminated to avoid expansion of the material and ferric oxide which can cause tooth discoulouration is also eliminated. Aguilar et al evaluated the biocompatibility of a calcium aluminate based-cement (EndoBinder) in subcutaneous tissue of rats, in comparison with the grey version of MTA. After 42 days, EndoBinder presented no inflammatory reaction. EndoBinder showed no inhibition zone around the material. Bioaggregate showed a seal slightly less than MTA but, higher than Calcium phosphate cement.

CONCLUSION

An ideal root-end filling material should meet the following characteristics which includes to provide a hermetic seal, to be dimensionally stable. Of all the materials available, none satisfies all of the desired qualities. Based on various studies, dental amalgam should no longer be used because of its inadequate sealing, poor marginal
adaptation and cytotoxic effect and of all the recent root end filling materials, MTA remains to be the material of choice and is considered the gold standard for all future root end filling materials.

REFERENCES:

Gutmann and Harrison, Gutmann's surgical endodontics, 1999.