Original Resear	Volume - 7 Issue - 6 June - 2017 ISSN - 2249-555X IF : 4.894 IC Value : 79.96	
al Of Applic	Engineerin	
Thermal Analysis of Piston Crown Coated with Copper		
Ch.Indira priyadarsini	Assistant professor, Mechanical Engg. Dept., CBIT, Gandipet, Hyderabad	
T.M.Bindu	B.E Student, Mechanical Engg. Dept., CBIT, Gandipet, Hyderabad	
Dr.M.V.S.MuraliK rishna	Professor, Mechanical Engg. Dept., CBIT, Gandipet, Hyderabad	
Dr.P.UshaSri	Professor, Mechanical Engg. Dept., OU, Hyderabad	
ABSTRACT The use of a metal based coating on the piston crown and its effect on heat transfer were studied in an SI engine. The piston crown is the top surface closest to the cylinder head of the piston which is subjected to tremendous pressure forces and heat		

ABSTRACT The use of a field based coaling of the piston clown and its effect on heat transfer where studied in an Stengine. The piston during normal engine operation. The main objective of this paper is to analyze numerically a heat transfer in the copper coated (CCE) and conventional (CE) piston of four stroke spark ignition engine which is determined mainly as a function of temperature from crown to skirt. Piston was modeled using solid works, boundary conditions were calculated analytically from experiment and a study state thermal analysis was performed using ANSYS Workbench. Copper coated piston showed better heat transfer and structural stability than piston without coating.

KEYWORDS : copper coat, SI engine, thermal analysis, coupled analysis of piston,

INTRODUCTION

Higher efficiencies, lower specific fuel consumptions and reduce emissions in modern internal combustion (IC) engines has become the center of attention to engine researchers and manufacturers. The global concern over the depletion of fossil fuels and the more stringent emissions regulations has placed the obligation on the engine industry to produce practical, economical and environmentally conscious solutions to power our automobiles. Heat utilization is one of the primary loss mechanisms in an internal combustion engine and it plays a crucial role in all aspects of engine operation. As a result, the want to better understand the effects of heat transfer on engine dynamics has led to a great deal of work in the field.

Silvio Memme[1] investigated and compared a baseline copper coating and a metal TBC. It was found reducing surface roughness of both coatings increased in-cylinder temperature and pressure as a result of reduced heat transfer through the piston crown. These increases resulted in small improvements in both power and fuel consumption, while also having measurable effect on emissions. Engine modification with copper coating on piston crown and inner side of cylinder head improves engine performance as copper is better conductor of heat and good combustion is achieved with copper coating. [2-3]. Muralikrishna etal. [4-6] studies the performance of SI engine by changing fuel composition, change of combustion chamber design and with provision of catalytic converter. Methanol blended gasoline (gasoline blended with methanol, 20%, by vol) improved engine performance and decreased pollution levels when compared with pure gasoline on CE. Ravindra Gehlot et.al.[7] analyzed ceramic coated diesel engine piston and found a significant increase in the pistons top surface temperature occurs with coating having holes. Although, the substrate temperature is decreasing with increase the radius of the holes. S.Srikanth Reddy et.al.[8] performed thermal analysis using ANSYS and optimized the piston using finite element analysis. The influence of ceramic coating thickness on temperature variations are studied by finite element method using ANSYS. S. Krishnamani et.al.[9], The temperature distribution analyses were conducted for the ceramic coating thickness of 0.3 mm over the piston crown surface. The results of the piston coated with two different coatings were analyzed. Dr.K.Kishor determined the temperature distribution across the piston, liner and cylinder head of conventional Engine (CE) and Copper Coated Engine (CCE) to study the performance of lubricating oil with the help of finite element method (FEM) using ANSYS software package. Hongyuan zhang[11] introduced the principle of thermal analysis for the combustion engine piston, gets the heat exchange coefficient of the piston top and the heat exchange coefficient distribution of the piston and the cooling water through calculation, calculates the temperature field of the piston with the finite element method and modifies the calculation model by repeatedly comparing the result with the measured temperature. It is

found out that the temperatures of the piston top and the first circular groove are relatively high after calculating the temperature field and based on the results the optimization scheme of adding the cooling oil chamber is applied to the piston structure. Results show that, after optimization, the maximum temperature of the piston top is decreased to 264° C, and the temperature at the first ring is decreased to 204° C, thus improving the working condition of the piston ring. Soniya kaushik[12]

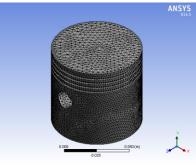
ENGINE SPECIFICATIONS

Bore	70 mm
Stroke	66.7 mm
Rated output	2.2 kW
Speed	3000 rpm
Sparkignition timing	25 o BTDC
Compression ratio	3:1 to 9:1
Specific fuel consumption	475 gm/ kW h
Lubricating oil	SAE-40
Make	Greaves Limited

Experiment was conducted on the engine of four- stroke, singlecylinder, variable compression ratio (3:1–9:1) and variable spark timing (250 to 280 BTDC), water-cooled, SI engine with a maximum power of 2.2 kW coupled with eddy current dynamometer.

FEA Steps

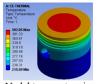
- 1. Pre-preferences
- 2. Pre-processor
- 3. Solution
- 4. Postprocessor


MODELLING AND MESHING

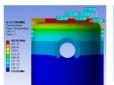
A 3D geometric model of piston was created using modeling software Solid works. The dimensions were taken from experimental engine setup: piston bore diameter is 70 mm, stroke is 66.7 mm with cast aluminum alloy as material and copper coat thickness is 3 mm. The part drawing converted into STEP. File and exported to ANSYS Workbench where meshing and simulation was performed. The model and mesh was shown in figure. 1 and 2.

Figure.1 Solid modeling of a piston with copper coating

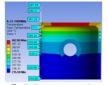
Figure.2 Meshing of a piston


BOUNDARY CONDITIONS AND ANALYSIS

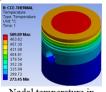
The boundary conditions have been calculated from experimental analysis. A heat flux of 2.1 Mpa has been applied on top of the piston i.e piston crown and an environmental initial condition of convection coefficient 10w/m2 K applied to the skirt of the piston.

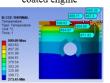

A steady state analysis was performed under above said operating conditions.

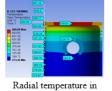
RESULTS AND DISCUSSION

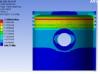

The results of analysis is shown in figure.3

Nodal temperature in conventional engine


Radial temperature in conventional engine


Radial temperature in conventional engine


Heat flux in conventional engine


Nodal temperature in coated engine

Radial temperature in coated engine

coated engine

Heat flux in coated engine

Volume - 7 | Issue - 6 | June - 2017 | ISSN - 2249-555X | IF : 4.894 | IC Value : 79.96

Figure.3 Comparison of temperature flow in conventional and copper coated engine piston

Figure.3 shows the temperature distribution in piston with copper coat on top of the piston. It is observed that a lower heat rejection from the combustion chamber through thermally insulated components causes an increase in available energy which in turn would increase the incylinder work and the amount of energy carried by the exhaust gases, which could also be utilized in later stages. It is relatively a thermal barrier copper coating material which has approximately 26.8% more thermal stability than conventional piston. It can resist phase transition up to 1300° K with thermal conductivity of 0.7 W/mK which is an added advantage in terms of reliability of engine operation in the event of sudden surge in temperature during combustion.

It is observed that the temperature variation in CE was 402°C to 215°C against 509.89°C to 273.45°C which indicates the heat enhancement in copper coated engine due to low heat rejection to neighboring components like piston liner and head. Temperature along the radius of the piston was determined 401.91°C to 359.8°C and 508°C to 464°C in CE and CCE respectively indicates that the nodal temperature was uniform in CCE when compared to CE.

The vertical temperature was observed from top of the piston to bottom of the piston which is to be 361.89° C to 215.81° C for CE and 461.24° C to 273.61° C for CCE.

A temperature of 280°C and 298°C for CE and CCE was noted at the place of lubricating oil which is under safe limit of SAE40 lubricant oil melting temperature according to data available.

Distribution of heat flux also uniform in CCE than CE resulted in better heat transfer per unit area for CCE.

CONCLUSIONS

The following conclusions are made from the numerical analysis.

- 1. Copper coated piston showed 23.34% increased heat flux over conventional.
- A uniform temperature distribution was observed in CCE than CE.
- Heat rejection to liner was lessening in CCE when compared to CE by 21.13%.
- More heat of 5.019% is converter into work using copper coating on piston crown which leads to over all increased performance of engine.
- From the analysis it was observed oil used for lubrication was not evaporated due to copper coated, resulted temperature (273°C to 311°C) was within the limit which indicates the safe guard to liner.

SCOPE

This work limited to only thermal load conditions. A coupled analysis can be done to determine the effect of combined load on piston due to copper coat. Different piston materials and coating materials can be tested. Coating thickness also an important factor which effect the work done and heat rejection in engine, but from the thermal barrier coating literature it was found 3mm thickness was best suited for better performance.

REFERENCES:

- Silvio Memme, "The Influence of Thermal Barrier Coating Surface Roughness on Spark Ignition Engine Performance and Emissions", Master of Applied Science Mechanical and Industrial Engineering University of Toronto 2012.
 S. Dhandapani, "Theoretical and experimental investigation of catalytically activated
- S. Dhandapani, "Theoretical and experimental investigation of catalytically activated lean burnt combustion," Ph D Thesis, IIT, Chennai, 1991.
 N. Nedunchezhian, and S. Dhandapani, "Experimental investigation of cyclic
- N. Nedunchezhian, and S. Dhandapani, "Experimental investigation of cyclic variation of combustion parameters in a catalytically activated two-stroke SI engine combustion chamber," Engg Today, 2,11-18, 2000.
 M.V.S.Murali Krishna, K. Kishor, P.R.K. Prasad, and G. V.V. Swathy, "Parametric
- [4] M.V.S.Murali Krishna, K. Kishor, P.R.K. Prasad, and G. V.V Swathy, "Parametric studies of pollutants from copper coated spark ignition engine with catalytic converter with gasoline blended methanol," Journal of Current Sciences, 9(2), 529-534, 2006.
- M.V.Š. Murali Krishna and K. Kishor, Investigations on catalytic coated spark ignition engine with methanol blended gasoline with catalytic converter", Indian Journal (CSIR) of Scientific and Industrial Research, 67, July, 543-548, 2008.
 K. Kishor, M.V.S. Murali Krishna, A.V.S.S.K.S. Gupta, S. Narasimha Kumar, and D.N.
- [6] K. Kishor, M.V.S. Murali Krishna, A.V.S.S.K.S. Gupta, S. Narasimha Kumar, and D.N. Reddy, "Emissions from copper coated spark ignition engine with methanol blended gasoline with catalytic converter," Indian Journal of Environmental Protection, 30(3), 177-187,2010.
- Ravindra Gehlot, , Brajesh Tripathi, "Thermal analysis of holes created on ceramic coating for diesel engine piston", Case Studies in Thermal Engineering Volume 8, September 2016, Pages 291–299, ELSEVIER.
 S. Srikanth Reddy, Dr. B. Sudheer Prem Kumar, "Thermal Analysis and Optimization of
- [8] S. Šrikanth Reddy, Dr. B. Sudheer Prem Kumar, "Thermal Analysis and Optimization of I.C. Engine Piston Using Finite Element Method", International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol.2, Issue 12, December 2013.

805

- [9] S. Krishnamani *, T. Mohanraj, "Thermal Analysis of Ceramic Coated Aluminum Alloy Piston using Finite Element Method", INDJST, Volume 9, Issue 22, June 2016.
 [10] Dr. K. Kishor, "Temperature Distribution across the Piston, Liner and Cylinder Head of Conventional and Catalytic Coated 2-Stroke SI Engine Using Finite Element Analysis by ANSYS", (IJAIEM), Volume 5, Issue 1, January 2016.
 [11] Hongyuan zhang, Zhaoxun lin, Jian xing, "temperature field analysis to gasoline engine piston and structure optimization", Journal of Theoretical and Applied Information Technology, 20th February 2013. Vol. 48 No.2.
 [12] Soniya kaushik, Rayapuri Ashok, Mohammed zubair nizami, , Dr.Mohd. Mohinoddin, "parametric and material optimization of two wheeler piston Using aluminum alloy 7475-761 and aluminum alloy 6061" International Journal of Advanced Trends in Computer Science and Engineering, Vol.2, No.1, Pages : 596 601 (2013).