M. Saranya

A. Subashini*

C. Arunagiri

PG \& Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli- 620002 , Tamil Nadu, India.
PG \& Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli- 620 002, Tamil Nadu, India.

ABSTRACT A two new copper(II) complexes, $2\left[\mathrm{Cu}(\right.$ phen $\left.)(\mathrm{mal}) \mathrm{H}_{2} \mathrm{O}\right] 1.5 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$ and $\left[\mathrm{Cu}(\right.$ bipy $\left.)(\mathrm{mal}) \mathrm{H}_{2} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ (2) (where, phen=1, 10 -phenanthroline, bipy $=2,2^{\prime}$-bipyridine, mal $=$ malonic acid) have been synthesized and the molecular structure of the compounds have been confirmed by single crystal X -ray diffraction technique. In both the complexes, the $\mathrm{Cu}(\mathrm{II})$ ion displays a five coordinatedgeometry where the Cu atom is coordinated by two nitrogen atoms of one 1,10 -phenanthroline $/ 2,2^{\prime}$-bipyridine ligand, two oxygen atoms of one malonate anion and one oxygen atom of a coodinated water molecule forming a slightly distorted square pyramidal geometry. The title compounds $\mathbf{1}$ and $\mathbf{2}$ crystallized in the triclinic system, space group P-1. The crystal structures are stabilized and strenghthen by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving both the coordinated and uncoordinated water molecules and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.
KEYWORDS : phenanthroline, bipyridine, copper, malonic acid, X-ray structure.

1. Introduction

Supramolecular systems based on coordination compounds have received much attention because of their potential use as sensors, probes, photonic devices, and catalysts and in host-guest chemistry [1]. Construction of organic inorganic hybrid materials is of interest for interesting framework structures and a variety of applications [27]. Bipyridine and its homologous such as phenanthroline as well as substituted phenanthrolines are widely used in the formation of metal complexes [8] for their potential applications in electrochemistry, analytical chemistry, biochemistry as a substitute for amino acid side group $[9,10]$. These ligands due to their chelating nature in metal complexes convincing control the aggregation behaviour by effectively chelating around the metal centre. In this regard some of the substituted bipyridine and phenanthroline like ligands have been studied [11, 12]. Among the copper complexes explored so far, attention has been mainly focused on the copper(II) complexes of 1,10-phenanthroline ligand due to their high nucleolytic efficiency [13] and numerous biological activities such as antitumor [14], anticandida $[15]$ and antimicrobial $[16,17]$ activities, etc., These complexes have also been widely utilized as foot printing agents of both proteins and DNA [18] probes of the dimensions of the minor groove of duplex structures [19] and identifiers of transcription start sites [20]. It has also been demonstrated to be an efficient antibacterial and also as an antiplaque agent. The crystal structure of malonatobridged hexamethy lenetetramine coordination polymers containing Mn (II) and $\mathrm{Cu}(\mathrm{II})$, malonate-based copper(II) coordination compounds[21], copper complex of bis [(2-aminoethyl)aminomethyl] malonate [22], $\left[\mathrm{Cu}(\mathrm{mal})(\right.$ bipym $\left.) . \mathrm{H}_{2} \mathrm{O}\right][23],\left[\mathrm{Cu}_{2}(\mathrm{mal})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(4,44^{\prime}-\right.\right.$ bipy]) [24], $\left[\mathrm{Cu}_{4}(\mathrm{mal})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(2,4 \text { bipy })_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad[25],\left\{\left(\mathrm{H}_{2}\right.\right.$ bpe $)$ $\left.\left[\mathrm{Cu}(\mathrm{mal})_{2}\right]\right\}_{\mathrm{n}} .4 \mathrm{nH}_{2} \mathrm{O}$ [bpe=$=$ bis(4-pyridyl)-ethylene] [26] have been reported in the literature. Phen can easily form $\pi-\pi$ interactions among their aromatic moieties, which are either intra or intermolecular [2729].

2. Experimental section

Preparation

An aqueous solution of copper acetate monohydrate $\left[\mathrm{Cu}(\mathrm{OAC})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]$ $(49.7 \mathrm{mg}$ in 5 ml water) was added to a methanolic solution of malonic acid (26 mg in 10 ml methanol). The mixture was stirred in a magnetic stirrer for 20 minutes. Then 1, 10- phenanthroline/ 2,2'- bipyridine (49.8/39 mg dissolved in 15 ml methanol) was added dropwise to this mixture. The resultant solution was again stirred at room temperature for another 40-60 minutes and then kept as such. After four days dark blue coloured crystals were obtained from their respective solutions. (CCDC deposit Numbers: 1010125 for 1 and 1020237 for 2)

3. X-ray data collection

For the compound 1 and 2, the X-ray data were collected using BRUKER SMART APEXII CCD [30] diffractometer with a graphite monochromated $\mathrm{MoK} \alpha$ radiation. The absorption correction was performed by multi scan method [31].

4. Structure solution and refinement

The data were reduced by using the program SAINT [30] and empirical absorption corrections were done by using the SADABS [30]. The structures were solved by direct methods using SHELXS97[33] and subsequent Fourier analyses, refined anisotropically by full-matrix least-squares method using SHELXL-97 [32]. The crystal data and details of structural determination are listed in Table. 1A for compound 1 and Table. 1B for compound 2 .

5. Results and discussion

The ORTEP views of the compounds are shown in Figure 1A \& 1B. In (1) two crystallographically independent $\mathrm{Cu}(\mathrm{II})$ complex molecules are found. The asymmetric unit contains two complex molecules and three uncoordinated water molecules. In each unit a bidentate malonate anion, one 1,10-phenanthroline molecule and a coordinate water molecule coordinated with $\mathrm{Cu}(\mathrm{II})$ ion to form a square pyramidal environment. The bond angles around the $\mathrm{Cu}(\mathrm{II})$ centres (: $\mathrm{N} 1 \mathrm{~B}-\mathrm{Cu} 2-\mathrm{O} 3 \mathrm{~B}=172.53(6)^{\circ}$ and $\left.: \mathrm{N} 1 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{O} 3 \mathrm{~A}=168.60(6)^{\circ}\right)$ are slightly larger than the second-largest ones $(\alpha$: N2B-Cu2-O1 $\mathrm{B}=164.03(7)^{\circ}$ and $\left.\alpha: \mathrm{N} 2 \mathrm{~A}-\mathrm{Cu} 1-\mathrm{O} 1 \mathrm{~A}=164.81(7)^{\circ}\right)$ (Table. 2A). Atoms O1A, O3A, N1A and N2A/ O1B, O3B, N1B and N2B consist of a square planar geometry with some deviation from perfect square plane. The apical positions are occupied by O1W and O2W respectively. The $\mathrm{Cu} 1-\mathrm{O} 1 \mathrm{~W} / \mathrm{Cu} 2-\mathrm{O} 2 \mathrm{~W}$ lengths are 2.263(2) and $2.292(2) \AA$ in the two molecules, slightly shorter than the value of 2.332 (4) \AA observed for $\mathrm{Cu}-\mathrm{O}$ water \AA in the complex $[\mathrm{Cu}$ (Hdapsox) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)$ where H_{2} dapsox is 2',2-(2,6-pyridindiyldiethylidene) dioxamohydrazide[35] but similar to that observed in the complex $\left[\mathrm{Cu}_{2}(\mathrm{mal})_{2}(\mathrm{IX})\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{n}$ [36] where IX is 1,4-bis(imidazole-1-ylmethylene)benzene) ($2.277 \AA$).

In complex 2, as illustrated in Figure 1B, the $\mathrm{Cu}(\mathrm{II})$ atom exhibits a slightly distorted square pyramidal coordination sphere, defined by two oxygen of one bidentate malonate anion, a 2,2'-bipyridine and a water molecule. Two nitrogen atoms from bipy ligand and O atoms from malonate dianion forming the equatorial plane and apical position is occupied by water molecule.

Although the base of the pyramid is planar, the bond angles deviate from the ideal value of 90° (Table 2B). The present complex is monomeric near copper metal centre. The complex molecule has an approximate plane of symmetry passing through atoms Cu 1 and O 1 W bisecting the $\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 4(80.97)$ and $\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3(93.05)$. The $\mathrm{Cu}-\mathrm{N}$ distances are unequal $[\mathrm{Cu} 1-\mathrm{N} 2=2.0022 \AA$ and $\mathrm{Cu} 1-\mathrm{N} 4$ $1.9956 \AA$] while $\mathrm{Cu}-\mathrm{O}$ distances $[\mathrm{Cu} 1-\mathrm{O} 1=1.9239 \AA$ and $\mathrm{Cu} 1-\mathrm{O} 3$ $1.9375 \AA$]. These distances are somewhat longer than reported values.

6. Hydrogen bonding

In complex 1, the malonate ligand sustained two deprotonated carboxylate groups leading to a dinegative charge on the ligand. Two
symmetry related malonate anions are bridged by adjacent uncoordinated oxygen atoms of three water molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming a ring with graph set notation $\mathrm{R}_{5}^{5}(18)$ as shown in Fig 2. One of the uncoordinated water molecule O5W (H5W) interacts with malonate oxygens O3B and O4B forming a ring with graph set notation $\mathrm{R}_{1}^{2}(4)$. O4W uncoordinated water molecule acts as a donor (H3W) to O2W while the same O4W acts as an acceptor to O5W water molecule (H6W) (Table 3A). These uncoordinated water molecules play a major role in extending these supramolecular architectures. Further the crystal structure is stabilised by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions Fig 3 .

In complex 2, there is a $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond found between the coordinated water molecule and un-coordinated water molecule (O1W-H1W ... $\left.\mathrm{O} 2 \mathrm{~W}=2.851 \AA, 177^{\circ}\right)$. The other H atom (H2W) interacts with malonate Oxygen O 4 atom through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond. $\left(2.793 \AA, 175^{\circ}\right)$. Two oppositely running copper complex molecules are interconnected by uncoordinated water molecule via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming a supramolecular ladder (Fig. 4). C4 atom of bipyridine (H4) interacts with O1W water molecule through $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 3B). Two such oppositely running molecules interact via a pair of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds forming a cage like structure as shown in Fig 5.

7. Conclusion

Copper + malonic acid complexed with phenanthroline/2, 2^{\prime} bipyridine have been synthesized and characterized by X-ray crystallography. The malonate ligand sustained two deprotonated carboxylate groups leading to a dinegative charge on the ligand. Here $\mathrm{Cu}(\mathrm{II})$ ions adopts distorted square pyramidal geometries. This is of interest in the design of metallo-organic hybrid frameworks, crystal engineering, biomolecular recognitions etc.

Fig 1A. ORTEP view of the title compound (I) showing $\mathbf{5 0 \%}$ probability displacement ellipsoids.

Fig 2. A packing view of $\mathrm{O}-\mathbf{H} \cdots \mathrm{O}$ interactions forming a loop (I)

Fig 3. A view of the two-dimensional layer constructed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding interactions.

Fig1B. ORTEP view of the title compound (2) showing 50\% probability displacement ellipsoids.

Fig 4. A View of supramolecular ladder of title compound (II).

Fig 5. A pair of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming a cage in compound (II)

Table 1A - Crystal Data and Details of the Structure Determination for compound $\mathbf{1 \& 2}$

Volume - $7 \mid$ Issue - $6 \mid$ June - $2017 \mid$ ISSN - 2249-555X | IF : $4.894 \mid$ IC Value : 79.96

Table 2A. Selected bond lengths (\AA) and bond angles (${ }^{\circ}$) for compound 1

Cu1-O1A			
Cu1-O1W	$1.9087(15)$	N2A-C12A	$1.355(3)$
Cu1-O3A	$2.2628(17)$	N2A-C11A	$1.322(2)$
Cu1-N1A	$1.9216(17)$	N1B-C2B	$1.320(3)$
Cu1-N2A	$2.0174(18)$	N1B-C13B	$1.354(2)$
Cu2-N2B	$2.0251(18)$	N2B-C11B	$1.327(3)$
Cu2-O2W	$2.0272(17)$	N2B-C12B	$1.356(3)$
Cu2-O1B	$2.292(2)$	Cu2-O3B	$1.904(2)$
N1A-C13A	$1.9256(15)$	Cu2-N1B	$1.9908(19)$
O1A-Cu1-O1W	$1.358(2)$	N1A-C2A	$1.320(2)$
O1A-Cu1-O3A	$99.24(6)$	C2A-N1A-C13A	$118.30(16)$
O1A-Cu1-N1A	$94.74(6)$	Cu1-N1A-C13A	$112.74(11)$
O1A-Cu1-N2A	$164.81(7)$	Cu1-N1A-C2A	$128.90(14)$
O1W-Cu1-O3A	$93.73(6)$	Cu1-N2A-C12A	$112.60(11)$
O1W-Cu1-N1A	$96.13(6)$	Cu1-N2A-C11A	$129.31(14)$
O1W-Cu1-N2A	$93.75(6)$	N1A-C2A-C3A	$122.24(19)$
O3A-Cu1-N1A	$168.60(6)$	C2B-N1B-C13B	$118.82(17)$
O3A-Cu1-N2A	$92.23(6)$	Cu2-N1B-C2B	$128.09(14)$
N1A-Cu1-N2A	$81.45(6)$	Cu2-N2B-C13B	$113.00(12)$
O2W-Cu2-O3B	$96.27(7)$	Cu2-N2B-C11B	$111.87(11)$
O2W-Cu2-N1B	$85.87(7)$	O2W-Cu2-N2B	$129.77(14)$
O3B-Cu2-N1B	$172.53(6)$	N1B-Cu2-N2B	$94.40(6)$
O1B-Cu2-O2W	$100.00(6)$	O1B-Cu2-O3B	$81.85(6)$
O1B-Cu2-N1B	$92.27(7)$	O1B-Cu2-N2B	$164.39(6)$
Cu1-O1A-C14A	$129.33(12)$	Cu1-O3A-C16A	$127.76(7)$
Cu2-O1B-C14B	$126.30(13)$	Cu2-O3B-C16B	$127.03(14)$
Cu2-O2W-H20	$121(3)$	N2A-C11A-C10A	$122.4(2)$
N2A-C12A-C8A	$123.31(16)$	N2A-C12A-C13A	$116.43(15)$
N1A-C13A-C12A	$116.38(16)$	N1A-C13A-C5A	$123.30(16)$
O1A-C14A-O2A	$121.79(18)$	N1B-C2B-C3B	$121.99(19)$
O2A-C14A-C15A	$117.24(18)$	O1A-C14A-C15A	$120.96(16)$
O3A-C16A-O4A	$121.98(16)$	O3A-C16A-C15A	$121.71(17)$
O4A-C16A-C15A	$116.31(18)$	N2B-C12B-C13B	$116.27(15)$
N1B-C13B-C5B	$123.24(17)$	N1B-C13B-C12B	$116.53(17)$
O1B-C14B-O2B	$122.56(17)$	O2B-C14B-C15B	$117.80(16)$
O1B-C14B-C15B	$119.62(15)$	O3B-C16B-O4B	$121.31(19)$

Table 2B. Selected bond lengths (\AA) and bond angles (${ }^{\circ}$) for compound 2

Cu1-O1	1.9239	Cul-O1W	2.526
Cu1-O3	1.9375	Cu1-N2	2.0022
Cu1-N4	1.9956	O1-C12	1.2843
O2-C12	1.2206	O3-C14	1.2779
O4-C14	1.2345	N2-C3	1.3375
N2-C1	1.3467	N4-C8	1.3393
N4-C7	1.3501	O1-Cu1-O1W	99.76
O1-Cu1-O3	93.05	N4-C7-C1	114.58
O1-Cu1-N2	90.72	N4-C8-C9	122.03
O1-Cu1-N4	169.51	O1W-Cu1-O3	94.94
O1W-Cu1-N2	90.44	O1W-Cu1-N4	86.78
O2-C12-C13	120.06	O3-Cu1-N2	172.81
O1-C12-C13	117.66	N2-Cu1-N4	94.56
O1-C12-O2	122.26	O3-C14-C13	80.97
Cu1-O1-C12	124.46	O4-C14-C13	118.59
Cu1-O3-C14	123.41	O3-C14-O4	117.98
Cu1-N2-C1	115.11	Cu1-N2-C3	123.42
Cu1-N4-C8	125.64	C1-N2-C3	126.17
C7-N4-C8	119.32	N2-C1-C6	118.71
N2-C1-C7	114.3		115.04
N2-C3-C4	122.51		121.92
N4-C7-C11	121.71		

Table 3A. Hydrogen bonding geometry ($\AA,{ }^{\circ}$) for compound 1

D-H \cdots A	Distance, \AA			$\underset{\left({ }^{\circ}\right)}{\mathbf{D}-\mathbf{H} \cdots}$
	D-H	$\mathrm{H}^{\cdots} \mathrm{A}$	D \cdots A	
O1W-H1W1 \cdots O2B	0.87(2)	1.86(2)	2.720(2)	170(2)
O3W-H1W \cdots O4A	0.92(2)	2.07(2)	2.984(3)	175(2)
O1W-H2W2 \cdots O4A	0.90(3)	1.93(3)	2.818(3)	175(2)
O3W-H2W \cdots O2B	0.91(3)	1.92 (3)	2.825(3)	171(3)
O4W-H3W \cdots O2W	0.96(5)	1.85(5)	2.768(3)	160(5)
O4W-H4W …O2A	0.88(2)	1.93(3)	2.784(3)	164(3)
O5W-H5W \cdots O3B	0.96(4)	2.42(5)	3.311(3)	155(4)
O5W-H5W \cdots O4B	0.96(4)	2.06 (4)	2.915 (3)	148(5)
O5W-H6W \cdots O4W	0.95(4)	2.20 (3)	2.812(3)	121(3)
O2W-H20 \cdots O2A	0.57(2)	2.43(3)	2.965(3)	159(4)
C4A-H4A \cdots O3W	0.93	2.45	3.268(3)	146
C7A-H7A \cdots O4B	0.93	2.49	3.272(3)	141
C10B-H10B \cdots O3W	0.93	2.46	3.285(3)	149

Table 3B. Hydrogen bonding geometry $\left(\AA,{ }^{\circ}\right)$ for compound 2

$\mathbf{D}-\mathbf{H} \cdots \mathbf{A}$	Distance, $\boldsymbol{\AA}$			$\mathbf{H} \cdots \mathbf{A}$ $\left({ }^{\circ}\right)$
	$\mathbf{H} \cdots \mathbf{A}$	$\mathbf{D} \cdots \mathbf{A}$	177	
O1W-H1W \cdots O2W	0.90	1.95	2.8511	175
O1W-H2W \cdots O4	0.90	1.90	2.7934	175

O2W-H4W \cdots O2	0.89	1.88	2.7624	173
C3-H3 \cdots O1	0.93	2.43	2.9449	115
C4-H4 \cdots O1W	0.93	2.53	3.4077	157
C6-H6 \cdot O4	0.93	2.46	3.3912	176
C8-H8 \cdot O3	0.93	2.54	3.0526	115
C13-H13A \cdots O2W	0.97	2.57	3.5232	166

References

[1] P. Bhowmik, S. Jana, P. P. Jana, K. Harms, S. Chattopadhyay, Inorg. Chim. Acta. 390 (2012) 53-60.
[2] M. Das, S. Chattopadhyay, J. Mol. Struc. 105 (2013) 250-258.
[3] P. K. Bhaumik, K. Harms, S. Chattopadhyay, Polyhedron 67 (2014) 181-190.
[4] M. Das, B. N. Ghosh, A. Valkonen, K. Rissanen, S. Chattopadhyay, Polyhedron 60 (2013) 68-77.
[5] X.M. Zhang, M.L. Tong, M.L. Gong, X.M. Chen. Eur. J. Inorg. Chem., 2003 (2003) 138142.
[6] L. Pan, H. Liu, X. Lei, X. Huang, D.H. Olson, N.J. Turro, J. Li. Angew. Chem. Int. Ed., 42 (2003) 542-546.
[7] S. Kitagawa, R. Kitaura, S. Noro. Angew. Chem. Int. Ed., 43 (2004) 2334-2375.
[8] A.W. Cordes, B. Durham, P.N. Swepston, W.T. Pennington, S.M. Condren, R. Jensen, J.L.Walsh, J. Coord. Chem. 11 (1982) 251-260.
[9] L.H. Berka, R.R. Gagne, G.E. Philippon, C.E. Wheeler, Inorg. Chem. 9 (1970) 2705-2709.
[10] K. Larsson, L. Ohrstrom, Inorg. Chim. Acta. 357 (2004) 657-664.
[11] G.A. Van Albada, I. Mutikainen, O. Roubeau, U. Turpeinen, J. Reedijk, Inorg. Chim. Acta. 331 (2002) 208-215.
[12] G.A. Van Albada, A. Mohamadou, I. Mutikainen, U. Turpeinen, J. Reedijk. Eur .J. Inorg Chem. (2004) 3733-3742
[13] D.S. Sigman, Biochem. 29 (1990) 9097-9105.
[14] J.D. Ranford, P. Sadler, J. Dalton Trans. (1993) 3393-3399
[15] G. Majella, S. Vivienne, M. Malachy, D. Michael, M. Vickie, Polyhedron 18 (1999) 2931-2939.
[16] J.D. Saha, U. Sandbhor, K. Shirisha, S. Padhye, D. Deobagkar, C.E. Ansond, A.K. Powelld,Bioorg. Med. Chem. Lett. 14 (2004) 3027-3032.
[17] M.A. Zoroddu, S. Zanetti, R. Pogni, R. Basosi J. Inorg. Biochem. 63 (1996) 29-300
[18] M.D. Kuwabara, C. Yoon, T.E. Goyne, T. Thederahn, D.S. Sigman, Biochem. 25 (1986) 7401-7408.
[19] J.A. Cowan, Curr. Opin. Chem. Biol. 5 (2001) 634-642.
[20] T.B. Thederahn, A. Spassky, M.D. Kuwabara, D.S. Sigman, Biochem. Biophys. Res.Commun. 168(1990) 756-762.
[21] F.S. Delgado, M.H. Molina, J.Sanchiz, C.R.Perez, Y.R. Martın, T. Lopez, F. Lloret, M. Julve, CrystEngComm. 22 (2004) 106-111.
[22] L. Shen, J. Liu, J. Gu, Z. Hu, Y. Xu, Stru.Chem. 13 (2002) 37-40.
[23] Y.R. Martın, J. Sanchiz, C.R. Perez, F. Lloret, M.Julve, Inorganica Chimica Acta. 326 (2001) 20-26.
[24] Y.R. Martı, C..R Perez, J. Sanchiz, F. Lloret, Inorganica Chimica Acta. 318 (2001) 159-165.
[25] C.R. Perez, M.H. Molina, P.L.A. Luis, F.Lloret, M. Julve, Inorg. Chem., 39 (2000) $3845-$ 3852.
[26] F. S. Delgado, J. Sanchiz, C.R. Perez, F. Lloret, M. Julve, Inorg. Chem., 42 (2003) 59385948.
[27] J.R. Rogan, D.D. Poleti, L.C. Karanovic, J. Serb Chem Soc. 69 (2004) 353-362.
[28] Y.B. Yin, H.X. Yu, Acta Cryst E 63 (2007) m2803.
[29] C.H. Ye, H.L. Sun, X.Y. Wang, R.L. Huang, J.R. Li, S. Gao, J Chem Crystallogr. 35 (2005) 381-384.
[30] Bruker: APEX2, SAINT and SADABS. Madison, Wisconsin, USA: Bruker AXS Inc; 2008.
[31] Oxford Diffraction. CrysAlis CCD and CrysAlis RED. Versions 1.171.32.5. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England, 2007.
[32] G.M. Sheldrick, A short history of SHELX. Acta Cryst A 64 (2008)112-122.
[33] A.W. Addison, T. N. Rao, J. Reedijk, J. Rijn, G. C. Verschoor, J. Chem. Soc. Dalton Trans. (1984)1349-1356.
[34] M. Diallo, M. Dieng, M. Gaye, A.S. Sall, A.H. Barry, B. Chahrazed, Acta Cryst. E63 (2007) m1810-m1811.
[35] Ivanovic-Burmazovic, I., Bacchi, A., Pelissi, G., Leovac, V. \& Andjelkovic, K. Polyhedron,18(1998) 119-127.
[36] Chawla, S. K., Arora, M., Nattinen, K., Rissanen, K. \& Yakhmi, J. V. Polyhedron, 23, (2004) 3007-3019

