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Introduction:
Universal stress proteins (USPs) are present in a diverse set of 
organisms from archaea and bacteria to fungi and plants. is 
evolutionary abundance shows their importance for all domains of 
the tree of life taxonomy. In stress conditions such as the presence of 
oxidants, uncouplers, DNA damaging agents, nutrient starvation, 
heat shock or other stress agents that could cause arrest of cell 
growth, USP acts as a precursor in constituting a natural biological 
defense mechanism. Under stress, USPs are overproduced and 
through various mechanisms facilitate the survival of the organisms 
in such uncomfortable conditions. USPs also help in the persistence 
and intracellular survival of pathogens including bacterial growth, 
stress and virulence. Most organisms have multiple paralogs of USPs, 
where the number of copies depends on the organism. In E. coli, there 
are six USPs (UspA, UspC (yecG), UspD (yiiT), UspE (ydaA), UspF 
(ynaF), and UspG (ybdQ), where UspE is a fusion protein composed 

(9,10)of two USP units E1 and E2).  In Arabidopsis thaliana, for example, 
there are four copies of usp genes. e exact function of USPs is not 
well understood and there are very little details about their role in 
aforementioned cellular processes. us it would be beneficial to 
predict the type of process they can be associated with. Such 
assignments suggest that Universal stress proteins occur both as 
single domain proteins and fusions with extra domains, where the 
extra domain may be an additional USP domain in Pseudomonas, a 
protein kinase domain in plants or an amino acid permease followed 

(9,10)by two USP domains in some archaea.  e Usp proteins are 
further classified  on the basis of their different substrate 
specificities. e three dimensional structures of these USPs provide 
valuable information for the understanding of their potential 
biochemical mechanisms, although the precise biological functions 
of these proteins are yet to be deciphered. e molecular basis of 
cellular operations is largely sustained by different type of 
interactions among proteins. However, it has become possible to 
combine the traditional study of proteins as independent entities 

(13)with the analysis of large protein interaction networks.   is is of 
particular interest as many of the properties of complex systems 
seem to be more closely determined by their interactions than by the 
characteristics of their individual components. e study of protein 
interactions is important not only from a theoretical perspective but 
also in terms of potential practical implications because it might 
enable new drugs to be developed that can specifically disrupt or 
modulate protein interactions, instead of simply targeting a given 

(1-3)protein's complete set of functions.  Noncovalent contacts 
between the residue side chains are the basis for protein folding, 
protein assembly and PPIs. ese contacts induce a variety of 
associations and interactions among the proteins. Based on their 
contrasting structural and functional characteristics, PPIs can be 

(1-3)classified in many ways.  On the basis of their interaction surface, 

they may be homo- or heterooligomeric; as defined by their stability; 
they may be obligate or nonobligate; as measured by their persis-
tence; they may be transient or permanent. A given protein-protein 

(1-3,8) interface may be a combination of these there specific pairs. e 
transient interaction would form signaling pathways while 
permanent interactions will form a stable protein complex. e 
region where two protein chains come into contact is the binding 
site; or for both sides, an interface. In order to identify interface 
residues and regions that line the protein surfaces, it is essential to 
know the structures of the proteins. In order to understand binding 
principles, properties that distinguish interfaces (or, binding sites) 

(1-3,8)from the rest of the protein surface need to be characterized. 

Materials and Methods:
Sequence based prediction approaches:
Predictions of PPIs have been carried out by integrating evidence of 
known interactions with information regarding sequential 
homology. is approach is based on the concept that an interaction 
found in one species can be used to infer the interaction in other 
species. However, there are two different methods under sequence 
based criterion. We performed sequence based prediction of PPIs 
within bacteria using BIPS-BIANA Interolog prediction server that is 
based on the known interactions of the orthologous genes of other 

(4) organisms (interologs). 

Sequence similarity measures: Sequence similarity between 
proteins relies on basic local alignment search tool (BLAST) 

(14) alignments. e query protein universal stress protein UspC from 
E. coli and USP from Corynebacteriales were aligned against all 
sequences with known interactions stored in the BIANA MySQL data 

(4)base.  e alignments provide a similarity measure based on the 
percentage of identical residues aligned and the percentage of 
sequence length of the queries and templates covered by the 
alignment (query and template coverage respectively). e threshold 
of 90% of template coverage has been used to ensure that the 
prediction is not inferred from local regions of the template 
interaction. Also, the geometric mean of individual identities (joint 
identities) and the geometric mean of individual BLAST E values 

-5(joint E values) are considered, i.e. E value ≤ 10 , Similarity ≥ 30%, and 
(4)alignment coverage ≥ 60%. 

Domain interactions: Based on the hypothesis that universal stress 
proteins UspC (E.coli) and USP (Corynebacteriales) have domains 
interacting with domains present in Pyruvate kinase (E.coli) and 
Pyruvate kinase (Bacillus sp.) respectively. Also, these domains could 
be interacting domains in the iPfam or the 3DID databases. e BIPS-
BIANA server measured the similarity of the target sequences with 
Pfam domains and HMMER program as a function of the E-value cut 
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-5 (4)off of 10  in the pFam A database. 

Further, we used STRING server version 10.0  as the STRING 
database aims to provide a critical assessment and integration of 
protein-protein interactions, including direct (physical) as well as 

(5)indirect ( functional) associations.  It has scalable algorithms for 
transferring interaction information between organisms. For this 
purpose, hierarchical and self consistent orthology annotations have 
been introduced for universal stress proteins and other interacting 
proteins, grouping the proteins into families at various levels of 

(5)phylogenetic resolution. e STRING server version 10.0  includes  
a completely redesigned prediction pipeline for inferring pro-
tein–protein associations from co-expression data, an API interface 
for the R computing environment and thus statistical analysis for 
Universal stress proteins UspC and USP from both gram positive and 
negative bacteria were performed. 

Phylogenetic Tree:
We generated Phylogenetic tree for UspC (E.coli.) and USP 
(Corynebacteriales) and Pyruvate Kinase (E. coli and Bacillus sp.) by 

(15)using Clustal Omega.  e underlying principle behind this method 
is that the coevolution between the interacting proteins can be 
reflected from the degree of similarity from the distance matrices of 
corresponding phylogenetic trees of the interacting proteins. e set 
of organisms common to the two proteins are selected from the 
multiple sequence alignments (MSA) and the results are used to 
construct the corresponding distance matrix for each protein. e 

(14)BLAST score  could also be used to fill the matrices. e linear 
correlation is calculated among these distance matrices.   

PPI Identification:
We used KFC2 server to identify the protein-protein interaction 

(6) interface. e KFC model is a machine learning approach for 
predicting binding hot spots within protein-protein interactions. 
e KFC model is comprised of two decision tree based classifiers: K-
FADE (based on shape specificity features calculated by the Fast 
Atomic Density Evaluator or FADE) or K-CON (based on biochemical 
contact features). Each decision tree that provides a set of hierarchi-
cal rules for hot spot classification is trained by a supervised learning 
process to recognize the local structural environments that are 

(7)indicative of hot spots.  ose residues were classified as hot spots if 
their mutation to alanine resulted in a change of binding energy 
(∆∆G) greater than 2 kcal/mol. K-FADE predicts hot spots using the 
size of the residue and the radial distribution of shape specificity and 
interface points. K-CON predicts hot spots in terms of a residue's 
intermolecular atomic contacts, hydrogen bonds, interface points 

(6)and chemical type. 

PPI analyses: 
We analyzed our proteins, Universal stress proteins, UspC (E. coli) 
and USP (Corynebacteriales) and Pyruvate Kinase ( from E.coli and 
Bacillus sp.) complexes for protein-protein interaction (PPI) 

(12) (11)interface by using PDBePISA  and PPCheck  servers. e stability 
of the complexes was calculated based on the following 
physiochemical criteria: 

1) free energy of formation.
2) solvation energy gain.
3) interface area.
4) hydrogen bonds.
5) saltbridges across the interface.
6) hydrophobic specificity.

e oligomeric state and symmetry/space group are calculated. 
Each assembly was assigned a complexation significance score (CSS) 
that gives information about the importance of the interface in 

(11)complex formation. Moreover, PPCheck server  provided 
information about all possible types of interactions and energy in the 
protein- protein complex, including Electrostatic energy, Hydrogen 
bond energy, Van der wall energy, Total stabilizing energy and 

(11)Normalized energy per residue etc. 

Results and discussion:
e protein-protein interactions for universal stress protein, UspC 
(E.coli.) and USP (Corynebacteriales) were established by a sequence 
based approach with the assumption that homologous proteins 
would have similar behavior. e approach uses sequence similarity 
between proteins based on the sequence alignment. e alignment 
of UspC and USP sequences with predicted partner proteins, 
Pyruvate Kinase (From E.coli and Bacillus sp.) based on 60% identity 
and 70% of the total length of the target protein and 90% of the 
template, where, template coverage is fixed to 90%. In a second 
approach the similarity of the target sequence with Pfam domains as 
a function of e-value was calculated. is results in the assignation of 
one or several Pfam domains to the query and target sequences. en 
the Interolog prediction server BIPS-BIANA based on interolog 
information compared the iPfam and 3DiD databases for domain-

(4)domain interactions.   e homology conditions were maintained 
with a joint e-value of 1e-10 and joint identity of 80%. e predictions 
were filtered assuming the traditional definition of interologs that 
both proteins suppose to interact if they are orthologous with 
proteins that interact. Both proteins were clustered by comparing 
with cluster of orthologous genes (COG) database and selected using 
GO annotations as they share the largest number of similar GO 

(4)terms.  

We further analyzed the PPI network of UspC and USP on the basis of 
active interaction sources e.g. co-expression, co-occurrence, gene 
fusion, neighborhood, experiments and databases by using a 
deterministic network drawing algorithm (STRING Server) that uses 

(5)a spring model to generate the network images.  Nodes are modeled 
as masses and edges as springs; the final position of the nodes in 
image is computed by minimizing the 'energy' of the system. e 
network nodes are proteins and the edges represent the predicted 
functional associations. e high confidence edges are given a higher 
'spring strength' so that they will reach an optimal position before 
lower confidence edges. e UspC interaction shows 11 nodes, 25 
edges, with average node degree 4.55, and clustering coefficient of 
0.876.(Fig.1.) e PPI enrichment p-value is 0.000292 and the 
functional enrichments in the network shows assigned GO 
annotations for different biological processes with GO accession id 
GO:0030261, chromosome condensation (3 genes)  with a false 
discovery rate of 0.000391; GO:0007059; chromosome segregation (3 
genes) with a false discovery rate of 0.00586; GO:0007049, cell cycle (4 
genes) with a false discovery rate of 0.0142; GO:0051301, cell division 
(4 genes) with a false discovery rate of 0.0142. e cellular component 
has been assigned a GO accession GO: 0009295, nucleoid (3 genes) 
with a false discovery rate of 0.00216. In confidence mode the 
thickness of the line indicate the degree of confidence prediction of 
the interaction. Action mode shows additional information about 

(5)the binding, activation etc. 

(a)   (b)

ORIGINAL RESEARCH PAPER Volume - 7 | Issue - 3 | March - 2017 | ISSN - 2249-555X | IF : 4.894 | IC Value : 79.96

INDIAN JOURNAL OF APPLIED RESEARCH X 327



Fig 1. Protein-protein interaction network for UspC (E.coli) and USP 
(Corynebacteriales). In evidence mode the edge lines predict the 
associations with different colored lines that are Red line- indicates 
the presence of fusion evidence, Green line-neighborhood evidence, 
Blue line- cooccurrence evidence, Purple line-experimental 
evidence, Yellow line-textmining evidence, Light blue line- database 
evidence, Black line- coexpression evidence. 

e USP interaction shows 5 nodes, 4 edges, with average node 
degree 1.6 and clustering coefficient of 0.8. (Fig.1.) e PPI 
enrichment p-value is 0.649 and the functional enrichments in the 
network shows assigned KEGG pathway annotation for different 
biological processes with pathway id 03018, RNA degradation (2 
genes) with a false discovery rate of 0.0182; PFAM protein domain 
pathway id PF00118, TCP-1/cpn60 chaperonin family (2 genes) with 
a false discovery rate of 0.00518; INTERPRO protein domain pathway 
id IPR001844, chaperonin Cpn60 (2 genes) with a false discovery rate 
of 0.00229; IPR002423, chaperonin Cpn60/TCP-1 family (2 genes) 
with a false discovery rate of 0.00229; IPR018370, chaperonin Cpn60 
conserved site (2 genes) with a false discovery rate of 0.00229; 
IPR027409, GroEL-like apical domain (2 genes) with a false discovery 
rate of 0.00229; IPR027413, GroEL-like equatorial domain (2 genes) 

(5)with a false discovery rate of 0.00229.  ese pathway interactions 
could reveal that USP might play a role in such biological processes. 

Further, phylogenetic tree was generated on the basis of multiple 
sequence alignment of universal stress proteins USPs ( from E.coli 
and Corynebacteriales) and Pyruvate kinases ( from E.coli and 

(15)Bacillus sp.) using the Clustal W and Clustal Omega parameters.  
e phylogenic tree generation method includes tree format 
(distance matrix) and clustering method (Neighbor Joining) with 
distance correlation for more divergent sequences.(Fig.2) e 
percent identity matrix was used with exclusion of gaps that is meant 
to forcing the alignment to use only positions where information can 
be included from all sequences. 

Fig. 2. Phylogenetic tree for UspC (E.coli), USP (Corynebacteriales), 
Pyruvate Kinase (E.coli) and Pyruvate Kinase (Bacillus sp.)

e phylogenetic tree shows branch distances for Universal stress 
proteins and Pyruvate kinase with Pyruvate kinase (E.coli), value 
0.28959, Pyruvate kinase (Bacillus sp.) value 0.45459, UspC (E.coli.) 
value 1.4175 and USP (Corynebacteriales) value 0.82250. (Fig.2) is 
shows that all proteins are evolutionary linked and possibly interact. 

(a)   (b)

(c)  (d)

Fig.3. (a) Hot Spots for UspC-pk complex (E.coli) (b) Hot Spots for 
USP-pk complex (Corynebacteriales-Bacillus sp. respectively) (c) PPI 
Interface for UspC-pk (E.coli) (d) PPI Interface for USP-pk 
(Corynebacteriales-Bacillus sp. respectively)

We identified the PPI interface and hot spots residues that 
(6,7)participate in the interaction.  Predicted hot spot residues based 

on K-FADE (Fast Atomic Density Evaluator) and K-CON 
(biochemical contact features) scores include Leu49 (K-FADE=0.52; 
K-CON=0.68), Arg58 (K-FADE=0.57; K-CON=0.72), Asn59 (K-
FADE=0.55; K-CON=0.59), Val60 (K-FADE=0.79; K-CON=0.71) for 
UspC-pk (E.coli) complex. e hot spot residues for USP-pk 
(Corynebacteriales) complex include Asp3 (K-FADE= 0.72; K-CON= -
0.50), Val6 (K-FADE= 0.49; K-CON= -0.28), Ala 31  (K-FADE= 0.34; K-
CON= -0.70), Arg32 (K-FADE= 0.08; K-CON= 0.15), Asp33 (K-FADE= 
1.24; K-CON=-0.22),  Pro35 (K-FADE=  1.39; K-CON= -0.20), Val85 (K-
FADE= 0.89; K-CON= -0.21), Leu87 (K-FADE=  1.69; K-CON= 0.19) ,  
Gln89 (K-FADE= 0.35; K-CON=0.08, Gln90 (K-FADE=-0.30; K-
CON=0.02), Tyr174 (K-FADE= 0.62; K-CON= -0.05), Asp178 (K-
FADE=0.70; K-CON= -0.26), Ala179 (K-FADE= 0.54; K-CON= -0.46) for 
chain A. e Hot spot residues in chain B include r355 (K-FADE= 
0.17; K-CON= -0.66), Ala360 (K-FADE= 0.79; K-CON= -0.50),  Ile361 (K-
FADE= 0.69; K-CON= 0.06), Ser364 (K-FADE= 0.68; K-CON=  -0.46),  
His367 (K-FADE= 0.34; K-CON= -0.18), His368 ( K-FADE= 0.58; K-
CON= -0.17), Leu372 (K-FADE= 0.12; K-CON= -0.07), Asn467 (K-
FADE= 0.15; K-CON= -0.33), Leu468 K-FADE= 0.14; K-CON= 0.01), 
Val471 (K-FADE= 1.13; K-CON= -0.15), Gly483(K-FADE= 0.26; K-
CON= -0.44), Phe576 (K-FADE= 1.27; K-CON= 0.21); Leu587 (K-

(6,7)FADE= 0.31; K-CON= -0.17).  e best value for K-FADE is 1 and the 
worst is 0. e hot spot residues and the PPI interfaces for UspC-pk 
(E.coli) and USP-pk (Corynebacteriales-Bacillus sp.) are depicted in 

(12)Fig 3. e PPI analyses from PDBePISA server  suggested that the 
UspC and Pyruvate Kinase (E.coli) complex has assemblies with 
multimeric state of 5 with formula AB4, composition ABCDE and the 
dissociation pattern is  A+BCDE. e surface area of the complex 
that indicates the total solvent-accessible surface area of the 

2assembly in Å  is 74016.2 and the buried area that indicates the total 
solvent accessible area of the assembly, buried upon formation of all 

2 intassembly's interfaces in Å  is 10378.7. ΔG  that indicates the 
solvation free energy gain upon formation of the assembly in 

disskcal/mol. is -62.7 kcal/mol. e value of ΔG , which indicates the 
(12) free energy of assembly dissociation in kcal/mol is 4.5 kcal/mol.

e free energy of dissociation corresponds to the free energy 
difference between dissociated and associated states. Positive values 

dissof ΔG  indicate that an external driving force should be applied in 
dissorder to dissociate the assembly, therefore, the assemblies with ΔG  

˃ 0 are thermodynamically stable. e rigid body entropy change at 
dissdissociation TΔS  in kcal/mol is 12.2 kcal/mol. e symmetry 

number that indicates the number of different but equivalent 
orientations of the assembly, which can be obtained by rotation, its 
value is 1 in the UspC-pk complex. e surface of the UspC-pk 
complex contains 1825 atoms (52.7%) and 1792 atoms (55.3%) 
respectively and the interface contains 103 atoms (3%) and 100 
atoms (3.1%) respectively. e complex surface contains 401 residues 
(86.4%) and 383 residues (88.5%) respectively and the interface 
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(12)contains 29 residues (6.2%) and 31 residues (7.2%) respectively.  
e interface solvent accessible area in Å are 1074.5 (5.6%) and 1074.8 
(5.6%) respectively. e solvation energies of the isolated structures 
in the UspC-pk complex in kcal/mol are -445.7 and -405.4 
respectively. e gain on complex formation in kcal/mol are -6.3 
(1.4%) and -6.3 (1.6%) respectively and the average gain accounts for -
1.8 kcal/mol (0.4%) and -2.6 kcal/mol (0.6%) respectively. e P-
values for the UspC-pk complex are assigned as 0.068 and 0.104 
respectively. e interface residues involved in hydrogen bond 
formation in the Usp-pk complex include Arg334 with Glu254 and 
Glu255 (3.89, 2.82 and 2.77 Å), Arg292 with Met279 and Asp297 (3.73 
and 2.81 Å, 3.05 Å), Lys261 with Asn300 (3.04 Å), Glu255 with Arg334 
(2.72 and 2.69 Å), Met279 with Arg292 (3.53 Å), Asp297 with Arg292 
(2.93 and 3.89 Å), Asn300 with Lys261 (3.17 Å). e interface residues 
involved in salt bridge formation include Arg334 with Glu255 (2.82, 
3.86, 3.08 and 2.77 Å), Arg292 with Asp297 (3.05 and 3.80 Å), Glu255 
with Arg334 (2.72, 3.92, 3.07 and 2.69 Å) and Asp297 with Arg292 (2.93, 
3.89 and 3.89 Å). e interface in complex Formation Significance 
Score (CSS) assigned is zero. CSS ranges from 0 to 1 as interface 
relevance to complex formation increases. However, achieved CSS 
implies that the interface does not play any role in complex 

(12)formation and seems to be a result of crystal packing only.
 
e surface of the USP-pk complex contains 1487 atoms (68.4%) and 
2321 atoms (53.2%) respectively and the interface contains 155 
atoms (7.1%) and 140 atoms (3.2%) respectively. e surface contains 
290 residues (99%) and 517 residues (88.1%) respectively and the 
interface contains 50 residues (17.1%) and 42 residues (7.2%) 
respectively. e interface in USP-pk complex has solvent accessible 
area 1529.3 Å (9.1%) and 1481.5 Å (5.9%) respectively. e solvation 
energies of isolated structures in kcal/mol are -244.6 and -573.1. e 
gains on complex formation are -5.4 kcal/mol (2.2%) and -10.4 

(12)kcal/mol (1.8%) respectively.  Moreover, the average gain are -6.5 
kcal/mol (2.7%) and -1.8 kcal/mol (0.3%). e P-values for USP-pk 
complex have been assigned as 0.619 and 0.008 respectively. e 

isolvation free energy gain upon formation of the interface ΔG in 
ikcal/mol is -15.8 kcal/mol and the ΔG P-value has been assigned to 

ithe complex is 0.072. However, a negative ΔG corresponds to 
hydrophobic interfaces, or positive protein affinity.  e interface in 
complex Formation Significance Score (CSS) assigned is zero. 
However, achieved CSS implies that the interface does not play any 
role in complex formation and seems to be a result of crystal packing 

(12)only.  e interface residues involved in hydrogen bond formation 
include Asp3 with Tyr580 (3.35 Å), Glu61 with Gln354 (3.67 Å), Gln68 
with r355 (2.88 Å), Glu84 with Asn371 (2.22 Å), Tyr174 with Gly483 
(3.83 Å). e USP-pk complex has electrostatic energy of 8.91 kJ/mol, 
Van der Wall energy of -24.60kJ/mol, total stabilizing energy of -
15.69kJ/mol and normalized energy per residue of -0.11kJ/mol. is 
indicates that the energetic signatures in the isolated proteins are 
retained in the bound forms that can help determining the binding 
orientation of proteins on complex formation. It also shows for 
protein surface networks characterized by strong couplings among 
constitutive residue pairs, as well as surface networks characterized 
by weak couplings among residue pairs. Strong couplings define 
residue networks important for structure stabilization and weak 
couplings (or low coupling) sub networks identify regions that are 
uncoordinated with the rest of the protein and are more likely to 
interact with other partners. e analysis of such energetic motifs 
could help identify binding sites and their orientations from the 
monomeric, isolated partners for a diverse ensemble of protein-
protein assemblies. 

Conclusion: 
e dominant philosophy in rational drug design i.e. the “one gene, 
one drug and one disease” paradigm focuses on the individual 
properties of a protein, for example, whether, it is essential for 
survival. Many effective drugs with different phenotypic effects can 
affect a group of molecular targets rather than a single protein. From 
a system's biology perspective, a protein's importance cannot be well 
defined by its individual biochemical function(s) but also its position 

in the protein-protein interaction (PPI) network i.e. its potential for 
interacting with other proteins. As the role of functional 
dysregulation of PPIs as the underlying cause of disease is well 
understood, network pharmacology that advocates combination 
therapies targeting multiple interconnected nodes in a PPI network 
represents a new setting for disease treatment. 
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