KEYWORDS



# "Absorbance measurement by monochromatic wavelength solution filters"

Wavelength, absorption, transmittance, nickel tetra - ammonium ion

# J. S. Lad

## Department of Physics, Rajaram College (Government of Maharashtra), Kolhapur - 416004 (M.S.) India.

**ABSTRACT** The purpose present research work is to find out solution absorption filters for colorimetric explores. An absorption filter was so built by using mixtures of seven different chemicals. The filter have a monochromatic wavelength. The solution filter would be suitable for absorbance measurement at monochromatic wavelength in various colorimetric analysis. Observations of values of expected wavelength of maximum absorption and observed wavelength of maximum absorption are similar in mixture solution of CrCl3 + Cu (NO3)2, CrCl3 + CuCl2 and KMnO4 + NiCl2. Whereas expected percentage transmittance and observed percentage transmittance is maximum in mixture solution of nickel tetra - ammonium ion and copper tetra - ammonium ion.

## **INTRODUCTION:**

Colorimetric procedures are involve in quantitative studies performed in the research laboratories. Working principle of colorimeter is based on the Beer Lambert's law. According to the law, when a monochromatic radiation transfer through a solution of absorbing medium, the absorbance is directly proportional to the concentration and width of the solution in the light track (Strong, 1952). Absorption filters are usually made from dyed glass, lacquered gelatin, or synthetic polymers to offer a wide range of applications (Sill, 1961 and Mortimer, 2003). According to Rogers 1986, Burtis and Ashwood, 1994) certain metal complexes or salts liquefied or suspended in glass yield colour equivalent to the predominant wavelength transmitted. Scientific Reports (1966) and Rand (1969) status that the efficiency of a COJ-500-D Griffin Colorimeter with the created filter was defining by equating the slope of calibration curve of aqueous KMnO4 solution with that obtained with the manufacturer filter of the colorimeter. The capability of the photometric system to yield a linear relationship between the radiant power incident on its detector and the measurable quantity provided by the system was performed by plotting a calibration curve for standard aqueous solution of KMnO4 Reule (1968).

#### A) Purpose of the filters:

They are used extensively to obtain approximately monochromatic radiation for photochemical or photo biological investigations. They are also used to reduce the effect of stray radiations or undesired spectral orders in dispersing systems. In general, the narrower the transmitted wavelength band and the closer its peak agrees with the absorption maximum of the substance being analyzed. The filter whose color should be as close as possible to the complementary color of the solution in the visible region. The filter should give narrower transmitted wavelength band so that its<sup>3</sup> effective band width is small.

#### **B)** Theory of colorimetry:

When monochromatic or homogeneous light falls upon a homogeneous medium, a portion of the incident light is reflected, a portion is absorbed, a portion is scattered within a medium and the remainder is transmitted. If the intensity of incident light is expressed by  $I_0$  that of absorbed light by  $I_a$ , that of transmitted by  $I_t$  and that of the reflected by  $I_a$  and scattered light by  $I_a$ , than

 $I_{_0} \,{=}\, I_{_a} \,{+}\, I_{_t} \,{+}\, I_{_r} \,{+}\, I_{_s}$ 

 $I_{a}$  is usually eliminated by the use of a control such as a comparison cell and  $I_{a}$  and can be reduced using clear solutions, hence.

 $\mathbf{I}_{0} = \mathbf{I}_{a} + \mathbf{I}_{t}$ 

Lambertzs investigated the relation between  $I_{\scriptscriptstyle 0}$  and  $I_{\scriptscriptstyle t}$  while Beers extended the experiments to solutions. Spectrophotometry and colorimetry are based upon Lamberts and Beers laws.

# C) Choice of absorption cell and Operations of the spectrophotometer:

There are different types of the absorption cells used in the ultra violet and visible regions. In current study work rectangular cell was used, which possess some particular characteristics. The rectangular cells are used for used for the liquids or solutions. The glass windows are sufficiently transparent for use in ultraviolet-and visible regions. Fused quartz is the window material for the cells. The cell window faces was parallel and flat to within a few wavelengths of radiation used. The dimensions of cell was perpendicular to the path of the radiation so that the radiation will not strike the walls and reflect from them.

Before taking the actual transmittance or absorption spectra, the instrument should be 'on' at least half on hour to stabilize electronic. The pilot light glows, indicating the electronics are on. When the power control switch is in the ideal or on, 100% transmittance is adjusted by REF front Panel taking reference solution in both rectangular cells. The solutions or liquid which is to be used in the cell should be transparent and clear. Similarly zero percent transmittance is adjusted using an opaque block in the reference position wavelength control. Rotating the wavelength control, rotates the wavelength cam, setting the angular position of the prism. This determines the control wavelength of the band of light; passing through the exit slit.

#### D) Measurement of transmittance and absorbance:

A cell is cleaned and coloured solution is taken in a cell and the kept in the sample position. The power switch is made on. The percentage transmittance and absorbance are noted in the visible region i.e. 400 to 89 m. (Ref. Table 1 to Table 03). In similar way spectra of each solution under study is taken. The plots of the percentage transmittance versus wavelength in mg of each solution are plotted (Ref. Fig. 01 to Fig.05).

#### E) Superimposition of two curves:

Transmittance spectra of two individual solutions were planned on the same scale. The portion of the super imposed curves is selected in such way that it will give narrow spectral region. In the selected spectral region, maximum percentage transmittance of any two curves is subtracted from hundred percent transmittance and remainder is again subtracted from maximum percentage transmittance of other curve at the same wavelength.

The combinations of solutions which are expected by superimposition of the curves are made in the range of concentration 0.1 M and then the transmission spectrum of each mixture of two solutions is taken. That is the observed transmittance spectrum in the expected region. The expected and observed transmittance spectra are plotted on the same scale and on the same graph paper. Then wavelength of maximum absorption ( $_{max}$ ), maximum percentage transmittance,

## ORIGINAL RESEARCH PAPER

half band width and range of the solutions filters are determined.

## EXPERIMENTAL

#### A) Preparation of solutions:

The solutions of selected metal ions are prepared in the concentration of 0.1 M. All the chemicals used were of analytical grade and double distilled water.

- Nickel chloride (NiCl<sub>2</sub>, 6H<sub>2</sub>O): 2.3765 g of nickel chloride was liquefied in little distilled water and diluted to 100 ml to get 0.1 M solutions.
- **2) Copper nitrate (Cu (NO<sub>3</sub>)<sub>2</sub>, 3H<sub>2</sub>O) :** 2.4152 g of solid copper nitrate was liquefied in double distilled water and finally diluted to 100 ml to get 0.1 M solution.
- **3) Copper chloride (CuCl<sub>2</sub>, 2H<sub>2</sub>O):** Preparation of 0.1 M solution of copper chloride was obtain by dissolving 1.7045 g of salt of it in

Volume - 7 | Issue - 3 | March - 2017 | ISSN - 2249-555X | IF : 4.894 | IC Value : 79.96

100 ml distilled water.

- 4) **Potassium permanganate (KMNO<sub>4</sub>):** 0.0158 g of solid potassium permanganate was dissolved in double distilled water and finally diluted to 100 ml.
- **5)** Chromic Chloride (CrCl<sub>3</sub>, 6H<sub>2</sub>O): 2.6638g of chromic chloride was dissolved in distilled water and finally diluted to 100 ml. The resultant solutions was having concentration of 0.1 M.
- 6) Copper-tetra ammonium ion: 0.8060 g of copper sulphate was dissolved in 100 ml of ammonia to get copper - ammonia complex. The resultant solution is of 0.1 M copper ammonium ion.
- 7) Nickel tetra ammonium ion: 0.7574 g of nickel sulphate was dissolved in 100 ml of ammonia to get nickel ammonia complex. The resultant solution is of 0.1 M nickel-ammonium ion. The individual transmission spectra of each solution is taken in the visible region using spectrophotometer.

| Observation tables: Table 01: Percentage transmittance of 0.1M of different solutions at various wavelength | 1 |
|-------------------------------------------------------------------------------------------------------------|---|
| Observation tables, fable 01, refeemage transmittance of 0.114 of unrefent solutions at various wavelengu   | 1 |

| Sr. | Wavelength |                     |                   |                    | Transmit                                                            | tance perce | entage          |    |    |                                |
|-----|------------|---------------------|-------------------|--------------------|---------------------------------------------------------------------|-------------|-----------------|----|----|--------------------------------|
| No. | in (mµ)    | Chromic<br>Chloride | Copper<br>nitrate | Copper<br>chloride | Potassium Nickel chloride Copper-tetra<br>permanganate ammonium ion |             | Nickel chloride |    |    | Nickel - tetra<br>ammonium ion |
| 1   | 300        | 70                  | 10                | 35                 | 11                                                                  | 88          | 85              | 75 | 78 | 87                             |
| 2   | 320        | 75                  | 65                | 47                 | 12                                                                  | 85          | 85              | 80 | 80 | 85                             |
| 3   | 340        | 72                  | 80                | 58                 | 13                                                                  | 82          | 79              | 82 | 82 | 75                             |
| 4   | 360        | 65                  | 85                | 65                 | 15                                                                  | 71          | 72              | 85 | 85 | 45                             |
| 5   | 380        | 55                  | 87                | 74                 | 25                                                                  | 40          | 40              | 87 | 87 | 62                             |
| 6   | 400        | 37                  | 88                | 81                 | 43                                                                  | 30          | 30              | 90 | 90 | 84                             |
| 7   | 420        | 15                  | 87                | 85                 | 61                                                                  | 50          | 51              | 89 | 90 | 90                             |
| 8   | 440        | 05                  | 86                | 88                 | 80                                                                  | 85          | 80              | 88 | 88 | 90                             |
| 9   | 460        | 03                  | 84                | 88                 | 70                                                                  | 95          | 87              | 85 | 81 | 90                             |
| 10  | 480        | 08                  | 82                | 88                 | 45                                                                  | 96          | 92              | 65 | 66 | 90                             |
| 11  | 500        | 23                  | 80                | 87                 | 15                                                                  | 97          | 95              | 43 | 43 | 83                             |
| 12  | 520        | 37                  | 77                | 85                 | 12                                                                  | 98          | 95              | 23 | 23 | 80                             |
| 13  | 540        | 35                  | 70                | 82                 | 12                                                                  | 99          | 95              | 09 | 15 | 74                             |
| 14  | 560        | 27                  | 65                | 79                 | 15                                                                  | 99          | 94              |    |    | 61                             |
| 15  | 580        | 16                  | 55                | 74                 | 25                                                                  | 97          | 90              |    |    | 58                             |
| 16  | 600        | 08                  | 45                | 69                 | 45                                                                  | 95          | 85              |    |    | 61                             |
| 17  | 620        | 04                  | 35                | 60                 | 60                                                                  | 90          | 80              |    |    | 67                             |
| 18  | 640        | 06                  | 30                | 50                 | 70                                                                  | 87          | 75              |    |    | 75                             |
| 19  | 660        | 10                  | 23                | 40                 | 75                                                                  | 85          | 72              |    |    | 81                             |
| 20  | 680        | 18                  | 17                | 30                 | 80                                                                  | 83          | 70              |    |    | 85                             |
| 21  | 700        | 25                  | 13                | 25                 | 90                                                                  | 80          | 70              |    |    | 88                             |
| 22  | 720        | 33                  | 12                | 18                 | 95                                                                  | 77          | 75              |    |    | 88                             |
| 23  | 740        | 43                  | 10                | 12                 | 98                                                                  | 75          | 80              |    |    | 87                             |
| 24  | 760        | 54                  | 07                | 08                 | 98                                                                  | 77          | 85              |    |    |                                |

## Table 02: Expected and Observed percentage transmittance of mixture at various wavelength

| Sr. | Wave           |          | chloride and copper | Wave      | mixture of chromic chloride and copper |          |  |
|-----|----------------|----------|---------------------|-----------|----------------------------------------|----------|--|
| No. | length in (mµ) | filt.    | rate                | length in | chloride                               |          |  |
|     |                | Expected | Observed            | (mµ)      | Expected                               | Observed |  |
| 1.  | 300            | 10       | 10                  | 300       | 15                                     | 15       |  |
| 2.  | 320            | 43       | 33                  | 320       | 27                                     | 32       |  |
| 3.  | 340            | 58       | 50                  | 340       | 40                                     | 47       |  |
| 4.  | 360            | 58       | 54                  | 360       | 32                                     | 40       |  |
| 5.  | 380            | 47       | 38                  | 380       | 23                                     | 29       |  |
| 6.  | 400            | 25       | 19                  | 400       | 16                                     | 20       |  |
| 7.  | 420            | 12       | 08                  | 420       | 10                                     | 12       |  |
| 8.  | 440            | 06       | 04                  | 440       | 05                                     | 05       |  |

## Table 03: Expected and Observed percentage transmittance of mixture at various wavelength

| Sr. | Wave      | mixture of potassium    |          | Wave | mixture of nickel chloride |          | Wave | mixture of nickel - tetra |          |
|-----|-----------|-------------------------|----------|------|----------------------------|----------|------|---------------------------|----------|
| No. | Length in | permanganate and nickel |          |      | and copper -tetra ammonium |          |      | ammonium ion and copper   |          |
|     | (mµ)      | chlo                    | ride     | (mµ) | ion                        |          | (mµ) | ammon                     | ium ion  |
|     |           | Expected                | Observed |      | Expected                   | Observed |      | Expected                  | Observed |
| 1.  | 360       | 10                      | 10       | 360  | 10                         | 10       | 360  | 30                        | 14       |
| 2.  | 380       | 12                      | 12       | 380  | 13                         | 40       | 380  | 49                        | 25       |
| 3.  | 400       | 15                      | 15       | 400  | 20                         | 60       | 400  | 72                        | 58       |

# ORIGINAL RESEARCH PAPER

#### Volume - 7 | Issue - 3 | March - 2017 | ISSN - 2249-555X | IF : 4.894 | IC Value : 79.96

| 4.  | 420 | 25 | 25 | 420 | 35 | 59 | 420 | 80 | 74 |
|-----|-----|----|----|-----|----|----|-----|----|----|
| 5.  | 440 | 50 | 45 | 440 | 70 | 41 | 440 | 83 | 69 |
| 6.  | 460 | 40 | 35 | 460 | 68 | 17 | 460 | 74 | 48 |
| 7.  | 480 | 20 | 20 | 480 | 50 |    | 480 | 58 | 20 |
| 8.  | 500 | 15 | 14 | 500 | 35 |    | 500 | 32 | 10 |
| 9.  | 520 | 12 | 12 | 520 | 23 |    | 520 | 10 |    |
| 10. |     |    |    | 540 | 15 |    |     |    |    |

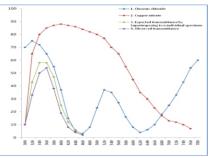



Fig. 1: Individual, expected and observed percentage transmittance of chromic chloride and copper nitrate at various wavelength

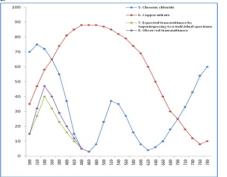
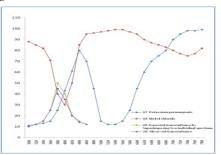
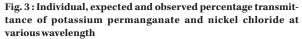





Fig. 2: Individual, expected and observed percentage transmittance of chromic chloride and copper chloride at various wavelength





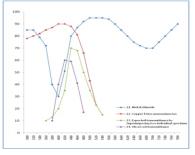



Fig. 4: Individual, expected and observed percentage transmittance of nickel chloride and copper tetra-ammonium ion at various wavelength

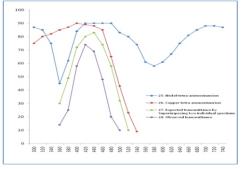



Fig. 5 : Individual, expected and observed percentage transmittance of nickel tetra - ammonium ion and copper tetra ammonium ion at various wavelength

#### **RESULTS AND DISCUSSION**

The observations of several study concerning the individual transmittance spectra, expected transmittance spectra superimposed spectra and observed spectra of above mentioned solution filters are given in Table 01 to Table 03 and Fig. 01 to Fig. 05.

| Sr. | Solution                          | max     | max     | %T      | %T      | $\Delta_{max}$ half | $\Delta_{max}$ half |
|-----|-----------------------------------|---------|---------|---------|---------|---------------------|---------------------|
| No  | Mixture                           | expecte | observe | expecte | observe | band                | band                |
|     |                                   | d       | d       | d       | d       | width               | width               |
|     |                                   |         |         |         |         | (expecte            | (observe            |
|     |                                   |         |         |         |         | d) m                | d) m                |
| 1.  | CrCl <sub>3</sub> +               | 360     | 360     | 58      | 54      | 80                  | 72                  |
|     | $Cu(NO_3)_2$                      |         |         |         |         |                     |                     |
| 2.  | CrCl <sub>3</sub> +               | 360     | 360     | 40      | 47      | 72                  | 76                  |
|     | CuCl <sub>2</sub>                 |         |         |         |         |                     |                     |
| 3.  | KMnO <sub>4</sub> +               | 440     | 440     | 50      | 45      | 52                  | 56                  |
|     | $NiCl_2$                          |         |         |         |         |                     |                     |
| 4.  | NiCl <sub>2</sub> +               | 440     | 420     | 70      | 60      | 72                  | 80                  |
|     | $Cu(NH_3)^{++}$                   |         |         |         |         |                     |                     |
| 5   | Ni(NH <sub>3</sub> ) <sub>4</sub> | 440     | 420     | 83      | 74      | 124                 | 80                  |
|     | **+ Cu                            |         |         |         |         |                     |                     |
|     | $(\mathrm{NH}_3)^{**}$            |         |         |         |         |                     |                     |

Robinson and Overston (1951) have detected a series of colour filters to give great selectivity. As of these observations, values of expected wavelength of maximum absorption, observed wavelength of maximum absorption, expected percentage transmittance, observed percentage transmittance, expected half band width and observed half band width obtained are mentioned in tabular format. Adeeyinwo Adedeji (2007) concluded that an absorption filter was so constructed using 40% CuSO4.5H2O solution in 8M HCl (w/v) in glass support of 2mm internal diameter. The filter was found to have a nominal wavelength of 540±0.92nm, spectral bandwidth of 41±0.82nm and a peak transmittance of 36±0.40%. Observations indicate that the values of expected wavelength of maximum absorption and observed wavelength of maximum absorption are similar in mixture solution of CrCl3 + Cu (NO3)2, CrCl3 + CuCl2 and KMnO4 + NiCl2. Whereas expected percentage transmittance and observed percentage transmittance is maximum in mixture solution of nickel tetra - ammonium ion and copper tetra - ammonium ion. Wherein expected half band width and observed half band width obtained are minimum and maximum in KMnO4 + NiCl2 mixture and NiCl2 + Cu(NH3)<sup>++</sup> and Ni(NH3)4<sup>++</sup> + Cu(NH3)<sup>++</sup> mixture solution respectively.

# **ORIGINAL RESEARCH PAPER**

#### **References:**

- 1. Adeeyinwo C. E. and Adedeji A. L. (2007) : Construction of Absorption Filter for colorimetry and its performance characteristics, Biomedical Research; 18 (2): 93-96
- 2. Association of Clinical Biochemists, England (1966): Colorimeters - A critical
- assessment of five commercial instruments. Science fife Reports; No2. Burtis C. A. and Ashwood E. R. Photometry (1994): In Tietz Textbook of Clinical Chemistry, Philadephia. Saunders SW Company 2nd edition. pp. 104-131. 3.
- 4. Mortimer A. (2003): Light filtration, Olympus Microscopy Resource Center, Olympus America, Inc Melville, New York, 11747.
- Rand R. N.(1969): Practical spectrophotometric standards. Clin Chem 15: 839 863. 5.
- Reule A. (1968): Testing spectrophotometer linearity. Appl Opt 7: 1023-1025. Robinson A.M. and Ovenston, T.C.J. (1951): A simple flame photometer for 6. 7. international standard operation and notes on some new lipid spectrum filters. Analyst, 76, 416-424.
- 8.  $Rogers\,A.\,(1986): Colour \,transmission \,in \,metal \,chemistry. J\,Chem\,Edu\,23: 18-19.$
- Sill C. W. (1961): Transmittance spectral of colour filters. Anal Chem 33:1584-1587.
  Strong F.C. (1952): Theoretical basis of the Bouguer Beer law of radiation absorption. Anal Chem 24: 338 - 341.