
Volume - 7 | Issue - 5 | May - 2017 | 4.894ISSN - 2249-555X | IF : | IC Value : 79.96

An Overview of Unified Verification Methodology

P. N. Jayanthi Assistant Professor, Dept. of Electronics and Communication Engineering, RVCE,
Bengaluru, India

KEYWORDS :

Abstract-In today's markets, industries have to focus on quality of their products to retain their competitive edge. It is
 a well-known fact that about one third of the total cost in the development of a new chip is devoted to hardware

debugging and testing. Design verification is an important step to achieve reliability. Even a small defect in any part or block of a SoC can lead to
improper functionality of the chip. Most of the existing verification methodologies involve providing test vectors as input and this may not
cover all test cases in an exhaustive manner. Hence, a novel approach that involves randomization of test vectors proves to be a solution in this
case. is paper provides the unified verification process and its importance. And the different aspects of verification are discussed for a given
chip.

ABSTRACT

Original Research Paper

Engineering

I. INTRODUCTION
e design of a SoC begins with the definition of its specifications.
is stage involves the definition of the features and functionalities of
the chip and is hence is very important. e design at the macro and
micro architectural level are derived from specifications mentioned
in the previous step. e specification normally includes the required
range of values for speed, size and power consumption of the chip in
question. Once verified that the architecture meets the required
specifications, the micro architecture can be drafted which helps in
the transformation of the architecture concept to a design
implementation, which is coded into a synthesizable RTL.

Next comes the process of verification. e goal of any hardware
design is to create a device which performs a particular task based on
a design specification. e verification process ensures that the
design is an accurate representation of the specification. Tests which
simulate real world situations are made to run on the high level
representations of the design and in the case the design does not
perform as expected, bugs appear which must then be rectified. e
verification engineer is not responsible for verifying the behaviour of
the device when not used for its original purpose but it is a good
practice to determine where those boundaries lie.

e process of verification goes hand in hand with the design
creation process. A designer must read and interpret the
specification of the required block and replicate his interpretation of
the logic into a machine-readable form, usually using a high level
design code (RTL). To achieve this task, the designer must
understand the different input signals and their respective formats,
the transformation functions, and similarly the different output
signals and their respective formats. A verification engineer must
also read the hardware specification and create a corresponding
verification plan. is is followed by test bench creation after which
test cases are built and run on the RTL to show that it correctly
implements the specified features. Redundancy makes sure that the
interpretation is correct and can be achieved by having many people
perform the same interpretation.

e verification process can be simplified by detecting and fixing
bugs created by running specific tests on DUTs at the block level,
which are generally created and owned by a single person. e next
place to look for discrepancies is on the interfaces. In order to
simulate a certain block, tests need to be created which generate
stimuli from all the surrounding blocks which would be present in

the physical implementation of the chip. e only benefit is that these
simulations run very fast. However, bugs may be found both in the
design and testbench.

e purpose of a testbench is to help carry out the verification plan. It
is a virtual representation the real time environment of the design.
e testbench performs the following functions.

Ÿ It generates the necessary stimulus required by the DUT
Ÿ It applies the stimulus to the DUT
Ÿ It captures the responses from the
Ÿ It checks the correctness of the responses
Ÿ e verification progress is then measured with respect to the

verification plan

As design blocks start to integrate, they start to stimulate one other,
thus reducing the required amount of work. Even though they may
run a slower pace, this method of verification tends to produce more
bugs. Verification at the highest level of the DUT ensures that the
entire system is tested but the process speed takes a hit and
simulation performance is greatly reduced. At this level sophisti
cated tests can be run that have the ability to make the DUT execute
multiple operations concurrently. Once verified that the DUT
performs the required functions correctly, the engineer needs check
operation of the same DUT when there are errors. Error injection and
handling are the most challenging part of the verification process
and as the design abstraction gets higher, so does the verification
challenge. It can never be proven there are no bugs left, and so new
verification tactics must be come up with.

is paper provides an overview of the different steps involved in the
verification testbench. RTL verification is first introduced following
which an insight is provided about gate level simulations. Finally, the
process of logic equivalence checking is looked at.

I. UNIVERSAL VERIFICATION METHODOLOGY
A test bench based verification environment automatically randomi
zed values for the chip inputs under control of certain constraints
and the checks the results suitably. All simulation based verification
suffers from the issue of insufficient test vectors to exhaustively test
the whole design. One way to address this issue is using constrained
random stimulus. e use of random stimulus provides significant
benefits. Random stimulus is great for uncovering unexpected bugs.
Many verification methodologies have been created to develop

Pooja Ganesh Student, Dept. of Electronics and Communication Engineering, RVCE, Bengaluru, India

Nikhil Guptha Student, Dept. of Electronics and Communication Engineering, RVCE, Bengaluru, India

392 INDIAN JOURNAL OF APPLIED RESEARCH

Volume - 7 | Issue - 5 | May - 2017 | 4.894ISSN - 2249-555X | IF : | IC Value : 79.96

constraint based-random value generating test benches in a uniform
fashion and permit limited reuse of test bench components. e best
known of these is the Universal Verification Methodology shown in
figure 1.

Fig 1. Block diagram of UVM methodology
e UVM methodology uses Transaction-Level Modelling (TLM) to
communicate between the Device Under Test (DUT) and the
testbench. A UVM class library brings automation to the System
Verilog language [7]. e UVM library defines a set of base classes and
utilities that facilitate the design of modular, scalable, reusable
verification environments.

e major components of a UVM test bench include the uvm_agent,
uvm_monitor, uvm_driver, uvm_scoreboard and the uvm_sequen
cer. e uvm_driver is inherited from uvm_component and is
responsible for driving the DUT[5]. It has transactions with the
sequencer to achieve randomized testing vectors.A monitor is an
entity that samples the DUT signals through virtual interface and
converts the signal activity to transaction level. It samples DUT
signals but does not drive it. Monitors usually consist of analysis
ports. An agent is a combination of driver, monitor and sequencer
and may be active or passive in nature. Active agents generate
stimulus and drive the DUT and hence consist of driver, monitor and
sequencer whereas a passive one doesn't drive the DUT.

e virtual sequencer along with the agent constitutes the reusable
test bench. Figure 2 helps to represent this testbench.

Fig 2. UVM Environment

UVM phases are required for carrying out events in a synchronized
and sequential order. e major UVM phases are build, connect ,end
of elaboration, start of simulation, run, extract, check and report
phase. ey are all derived from uvm_component [6].

e build, connect and end-of-elaboration come under the category
of build phases. Start of simulation and run come under run phases
and the rest fall under the category of clean up phases. e different
UVM phases are as follows:

Ÿ Build: e build phase follows a top down approach and is used
to construct the testbench components.

Ÿ Connect: e connect phase follows a bottom up approach and is
used to connect TLM ports of components.

Ÿ End_of_elaboration: e end of elaboration phase is used to
make any final adjustments to the structure, configuration or
connectivity of the testbench before simulation starts.

Ÿ Start_of_simulation: e start of simulation phase is used for
printing testbench topology or configuration information.

Ÿ Run: e run phase is used for stimulus generation, driving,
monitoring and checking.

Ÿ Extract: e extract phase is used to retrieve and process
information from scoreboards and functional coverage
monitors.

Ÿ Check: e check phase is used to check that the DUT behaved
correctly and to identify any errors that may have occurred
during execution

Ÿ Report: e report phase is used to display the results of the
simulation or to write the results to file

Ÿ Final: e final phase is used to complete any other outstanding
actions that the testbench has not already completed

I. GATE LEVEL SIMULATIONS
An important part of the verification cycle is the running of
simulations. Simulations can be performed at varying levels of
abstraction, i.e., the transistor level, the gate level and the register
transfer level. Most companies tend to sign off the design cycle after
running simulations only at the RTL level. Lately, however, there has
been an increasing trend in the industry, for reasons that will be
discussed, to run gate level simulations (GLS) before going into the
next stage of the VLSI design flow. GLS is a major step in the
verification cycle [2]. GLS provide a variety of errors, the most
common and most challenging of which is the “x” propagation
debug. is error can come about for a variety of reasons such as
timing violations, uninitialized memory and non-resettable flops.

A. Necessity of gate level simulations
GLS is carried out in order to:

Ÿ Verify the critical timing paths in asynchronous designs that is
usually not performed in STA.

Ÿ Validate the constraints used in the process of STA and EC.
Ÿ Verify black boxes which may be present in EC.
Ÿ Verify the reset operation of the given design.
Ÿ Verify the power up operation of the given design.
Ÿ Verify that the design does not unintentionally depend on the

initial conditions under which it is supposed to operate.
Ÿ Verify low power structures which are cannot be added in RTL

and added only during synthesis phase.
Ÿ Verify that the digital and analog netlist have been successfully

integrated.
Ÿ Verify DFT structures which are not present in RTL and which are

added during synthesis.

B. Gate Level Simulation Flow
e gate level simulation flow is represented in figure 3. Given both a
standard cell library and the required design constraints, the high
level design (RTL) can be converted to its equivalent gate level
representation, i.e., its gate level netlist. is process is known as
logical synthesis. A standard cell library generally contains basic
logic gates like AND, OR, NOT etc. and macro cells like adders and flip
flops.

Fig 3. Gate Level Simulation Flow
A. Static Timing Analysis
Static Timing Analysis is a method used to determine as to whether a
circuit has met the required timing constraints without having to

 INDIAN JOURNAL OF APPLIED RESEARCH 393

perform simulations. It is much faster than timing-driven, gate-level
simulations. Proper circuit functionality is not checked and vector
generation is not required. Static Timing Analysis involves the
following steps:

Ÿ e first step is to break the circuit down into a set of timing
paths.

Ÿ e next step is to calculate the delay of each timing path. is
delay is calculated by summing both the net delays and cell
delays along the given path.

Ÿ Finally, the path delays are checked to see if the required timing
constraints have been met.

1) Setup Time and Hold Time

Data which must be sampled by a flop on a given clock edge must be
stable for a minimum period of time both before and after the
respective clock edge in order to be latched correctly. e minimum
amount of time before the edge for which the data must be stable is
more commonly call the setup time. Similarly, the minimum amount
of time after the clock edge for which the data must be stable is more
commonly known as the hold time. Any violation with respect to
these timing values leads to incorrect data to be captured by the flop
and is known as a timing violation. e respective violations are
called the setup and hold time violations. e equations for
calculating the setup and hold times is discussed below. e
equations for setup time and hold time can be derived from figure 4
[3]. e figure shows two flops talking to one another, where the first
flop acts as the origin of the data which must be captured by the
second flop. e equations for setup and hold time which will be
defined will be true for any flop in the design and is not restricted only
to the scenario shown in figure 4.

Fig 4. Two talking flops scenario
At time zero, the first flip flop (FF1) processes the data at its input
port, D2. e time taken for D2 to propagate to the second flip flop
(Ff2), taking the positive clock edge at FF1 as reference, can be
represented as the sum of the delay for the corresponding output to
appear at the output of FF1, T , and the delay of the combinational c2q

logic, Tcomb. For FF2 to successfully latch this data, D2 has to be
maintained at D of FF2 for T time before the clock tree sends the setup

next positive edge of the clock to FF2. Hence to meet the setup time,
eqn. 3.1 must be satisfied.

T + T + T ≤T + T (3.1)c2q comb setup clk skew

Now, in order to make sure the hold time is met at the first flop, the
data D1 must remain stable for some time (T) after the positive hold

clock edge.

Equation 3.2 must be satisfied to ensure that the hold time is met.
T + T ≥T + T (3.2)c2q comb hold skew

e timing diagram in figure 5 [3] helps to provide a figurative
representation of the equations discussed above.

Fig 5. Setup and Hold timing diagram

As seen above, setup time violations can be corrected with changes in
the clock period, or in other words, clock frequency. However hold
time violations cannot be corrected in this manner. Hold time
violations indicate design issues and must be corrected from the
design perspective before being verified again.

1) Standard Delay Format File
SDF file is used to represent circuit delays. SDF or Standard Delay
Format is an IEEE specification [4]. e STA tool is used to generate
SDF files which will contain both interconnect and cell delay [4]. e
SDF file is created for different variations in process, voltage and
temperature (PVT). Process variations account for deviations in the
semiconductor fabrication process. ese variations are caused due
to uniformity not being maintained during the process of during the
diffusion of the impurities. is leads to change in sheet resistance
and transistor parameters such as threshold voltage. ICs are
generally produced in lots of 50 to 100 wafers with approximately 100
dice per wafer. Each lot can differ in terms of their electrical
properties. Slight differences can even exist among wafers in a single
lot, even in a single manufactured chip. As a result transistors end up
having different transistor lengths in a chip. is in turn affects the
propagation delay to vary in a chip, as a smaller transistor is faster
and vice versa.

e design's supply voltage can vary from the designed ideal value
during daily operation. e delay of a cell depends on the saturation
current of the cell which in turn depends on the supply voltage. e
power supply varies throughout the core and hence so does the
propagation delay. e voltage drop across the chip occurs due to
internal resistance as well as the self-inductance in supply wires. A
higher voltage leads to higher operating frequencies which in turn
makes the cell faster.

Temperature variations are unavoidable in the everyday operation of
an electronic device. While a chip is operating, the temperature can
vary throughout the chip. is is caused due to power dissipation
from MOS-transistor operation which can be attributed to switching,
short-circuit and leakage power consumption. Temperature has a
direct effect on electron and hole mobility. For temperatures above -
50C, the mobility in Si decreases with increased temperature.
Decrease in mobility leads to an increase in the propagation delay
and hence an increase in temperature leads to higher propagation
delay. e different combinations of PVT variations represent
“corners”. e design must provide the required performance for all
PVT variations, i.e., the design must pass on these corners. ere are
many combinations of different PVT values possible. However,
specific corners are chosen which would cover all such
combinations.

D. Annotation
e process of adding delays defined in a given source to the various
cells in a netlist during netlist simulation is called Back Annotation.
is source of delays is the SDF file described above. is is
represented in figure 6.

Fig 6. Back Annotation

Volume - 7 | Issue - 5 | May - 2017 | 4.894ISSN - 2249-555X | IF : | IC Value : 79.96

394 INDIAN JOURNAL OF APPLIED RESEARCH

e delay values for each cell are initially determined from
simulations. But the delays determined are not the actual delays of
the cells. Rather they are the delays the cells would display when they
are used in different environments. ese environments can have
varying locations, varying loads and varying fan-in. Two similar cells
placed at different locations on the core can have significant
differences based on the factorsjust mentioned above. In order to
simulate the different cells at these delay values, SDFs must be
written by an EDA tool. is tool defines the delays of each cell
instance in the netlist depending on these factors. During
simulations each cell in the netlist has its corresponding delay read
from the SDF file. Before annotation is carried out with SDF files, a
zero delay gate level simulation is carried in order to check whether
the simulation is working correctly with the netlist or not. Ideally,
without an SDF there should not be any issue, but ‘X’ propagation can
still occur due to gate delay and sync cells.

III. LOGIC EQUIVALENCE CHECK
Once verified that the synthesized netlist meets the required timing
requirements, it must be ensured that the netlist created still
maintains the same functionality as our RTL code. A logic synthesis
tool can help to ensure that the netlist is logically equivalent to the
RTL source code. is process is called as logic equivalence checking.
ere are several inputs required for LEC but some are very crucial
and sometimes overlooked. ey include:

Ÿ Robust black box matching
Ÿ Correct scan constraints
Ÿ Port mismatch between timing models and behavioural code.

IV. CONCLUSION
Verification is the most important and the most time-consuming
part of chip design. New chip designs coming out within months,
verification needs to be done faster to achieve its goal. Test benches
designed to be robust and flexible at the same time to address this
issue. Constrained random testing was created to reduce the
amount of time required and run directed tests. To improve
portability and interoperability for RTL verification, a standard
called UVM was created. e paper introduced the UVM standard
and its flow. Once RTL verification is carried out, the timing
requirements for the DUT under different conditions must be
verified. is verification is carried with the help of GLS. Finally, once
the timing requirements of the gate level netlists is verified, these
netlists must be checked for functional equivalence with the RTL.
is is carried out through the process of LEC.

REFERENCES
[1] Harry Foster, "Trends in functional verification: a 2014 industry study", DAC, 2015.
[2] Ankit Khandelwal, Abhinav Gaur and Deepak Mahajan. “Gate level simulations:

verification flow and challenges”, Internet: http://www.edn.com/design/integrated-
circuit-design/4429282/Gate-level-simulations--verification-flow-and-challenges,
Apr. 12, 2017.

[3] Deepak Kumar Behera and Karthik Rao C.G. “Equations and Impacts of Setup and
Hold Time”, Internet: http://www.edn.com/design/systems-design/ 4392195/ Equat
ions-and-Impacts-of-Setup-and-Hold-Time, Apr. 21, 2017.

[4] Sini Mukundan. “Standard Delay Format”, Internet: http://vlsi.pro/standard-delay-
format-sdf-file/, Apr. 12, 2017.

[5] Ke Wang,Hong-Bo Zhu,Wei-Gou Lu,Zhen-An Liu,“A testbench research based on UVM
for ABCStar”,Published in Real Time Conference (RT), 2016 IEEE-NPSS, 6-10 June
2016.

[6] Wei Ni,Jichun Zhang, “Research of reusability based on UVM verification”, ASIC
(ASICON), 2015 IEEE 11th International Conference on 21st July 2016.

[7] Hao Wang, “e Preamp chip's verification and analysis based on UVM Methodology”,
2014

Volume - 7 | Issue - 5 | May - 2017 | 4.894ISSN - 2249-555X | IF : | IC Value : 79.96

 INDIAN JOURNAL OF APPLIED RESEARCH 395

	Page 1
	Page 2
	Page 3
	Page 4

