DETECTION OF VIRULENCE FACTORS OF UROPATHOGENIC ESCHERICHIA COLI FROM DIFFERENT PATIENT GROUPS IN A TERTIARY CARE HOSPITAL.

Dr. B. Padmini
Assistant Professor Department of Microbiology Coimbatore Medical College Coimbatore

Dr. S. Deepa*
Assistant Professor Department of Microbiology Coimbatore Medical College Coimbatore
*Corresponding Author

ABSTRACT

Background: Urinary tract infection is one of the most important causes of morbidity and mortality and most commonly caused by bacterial infections. Escherichia coli is the most frequent urinary pathogen. Number of virulence factors have a role in the virulence of Uropathogenic E.coli that are absent in non pathogenic E.coli.

Materials and Methods: 300 E.coli strains from symptomatic UTI patients of different groups were screened for virulence factors like haemolysin, Mannose Resistant (MRHA) and Mannose sensitive haemagglutination (MSHA) by recommended methods. Antimicrobial susceptibility pattern were also recorded.

Results: Hemolysin production (35.8%) and MRHA (29.9%) indicating the presence of P fimbriae were more in E.Coli isolates from Nephrology patients. 3rd Generation Cephalosporins showed a increased resistance rates.

Conclusion: Early Detection of these virulence markers is reasonably easy which will prevent complications like persistent and recurrent infection. Antimicrobial susceptibility pattern guide the clinician to provide appropriate antimicrobial therapy.

KEYWORDS: Uropathogenic Escherichia coli, Mannose Resistant Haemagglutination, Urinary tract infection.

Introduction:
Urinary tract infections are the most common entities encountered in medical practice and it affects all age groups from new born to old age. It is responsible for many complications such as premature babies, hypertension and renal failure. In India, UTI accounts for 9.3 million doctor visits and nosocomial UTI accounts for more than 1 million cases. More than 90% of UTI are caused by Escherichia coli and 10 to 20% by coagulase negative staphylococcus and 5% or less caused by Klebsiella, Proteus mirabilis, Enterococcus and Pseudomonas aeruginosa. In rare cases Candida albicans can cause UTI. UPEC strains cause 75-90% of community acquired and about 50% of Nosocomial UTI. Bacterial pathogenicity plays a major role in host-pathogen interaction that leads to UPEC. Virulence markers of Uropathogenic E.Coli includes flagella, aerobactin, hemolysin, adhesins (P fimbriae & type 1 fimbriae) K Capsule, cytotoxic necrotizing factor, cell surface hydrophobicity, siderophores and resistance to serum killing. These virulence factors favor the development of cystitis, urethritis, phelonephritis, bacteremia and septic shock.

Among the virulence factors of UPEC, production of fimbriae, (Type 1 fimbriae and Pap Fibriae) & haemolysin are more important. Attachment by fimbriae and subsequent secretion of hemolysin causes destruction of urinary tract cells.

Hence the present study is to demonstrate the presence of virulence factors like type P fimbriae, type 1 fimbriae and hemolysin in symptomatic UTI patients of Nephrology, Urology, medicine and paediatric departments along with antimicrobial susceptibility pattern.

Materials and Methods
This study was conducted in Coimbatore medical college hospital, Coimbatore for a period of 1 year from February 2014 to January 2015. A total of 300 Escherichia coli isolates in symptomatic cases of UTI (both outpatients & inpatients) from various department like Nephrology, Urology, Medicine and Paediatric patients were studied for detection of virulence factors of UPEC in Microbiology Diagnostic laboratory after obtaining approval from ethical committee. Sample collection and processing done as per standard protocols. Escherichia coli were isolated and identified as described by Bailey & Scott with modifications.

Detection of virulence factors:
Fimbriae (pili) are thin, hair-like surface adhesive organelles made of protein sub units. In 1960s, JP Deguid described different types of fimbriae.

Type 1 Fimbriae:
Single most commonly expressed virulence factor by more than 80% of all UPEC. Type 1 pili possess adhesins whose ability to mediate haemagglutination is blocked in the presence of D-Mannose (MSHA) and D-galactose – D-galactose residue.

Type P Fimbriae:
Second most common virulence factor of UPEC also named as PAP – Pyelonephritis – associated pili. It is derived from the ability of p fimbriae to bind specifically to the p blood group antigen which contains a D-galactose – D-galactose residue.

Haemolysins:
The haemagglutination was detected by clumping of erythrocytes by fimbriae of bacteria in presence of D-mannose. The method followed was according to Siegfred et al. Bacteria grown on TSA agar medium were sub cultured onto Mac Conkey’s plates and incubated at 37°C overnight. E.coli grown on MA plates were inoculated into 5 mL of phosphate buffered saline pH 7.4 (PBS) and incubated for 5 days at 37°C to get fimbriae enriched E.coli. The pellet formed on the surface was noted and sub cultured onto colonization Factor Antigen (CFA) agar and incubated overnight at 37°C. Five millilitres of group A positive venous blood was collected using disposable syringe from a voluntary donor and added to an equal amount of Alsever’s solution. This was washed three times and 3% erythrocyte suspension was made with PBS. Controls used were ATCC E.coli 25922. The procedure of Siegfred et al was modified and carried out on VDRI slides instead of microtitre plates.

Standard uropathogenic E.coli: E.coli ATCC 25922 was used as controls for detection of virulence markers.

Haemolysin:
The cytolytic protein toxin secreted by most haemolytic E.coli isolates is known as alpha haemolysin. Alpha Haemolysin was detected by determining a zone of lysis on sheep agar plates after overnight incubation.
RESULTS:
300 Escherichia coli isolates obtained from both out patients and hospitalized patients belonging to the departments of Urology, Nephrology, Medicine and Paediatrics. The positive cultures were obtained from 60.8% (n=182) female and 39.2% (n=48) male patients within the age group of 2 - 70 years. Both sexes were equally affected below 10 and above 50 years of age (45 to 55 %). Females were more commonly affected during the reproductive age group (70%). The females predominate with female to male mean ratio of 1.5:1

After confirming E.coli by cultural methods and biochemical reactions, the phenotypic characteristics like MRHA of 3% human erythrocytes indicating the presence of mannose indicating type P fimbriae, MSHA of 3% human erythrocytes indicating type 1 fimbriae and haemolysin production of 300 E.coli isolates were studied. The E.Coli isolates were more from Paediatrics and Medicine departments than from Urology (20%) and Nephrology (18%). Significantly more isolates from (29.9%) Nephrology followed by (19.2%) isolates from Paediatric patients exhibited MRHA of 3% human erythrocytes indicating the presence of P fimbriae. However, MSHA of 3% human erythrocytes indicating type 1 fimbriae was present equally in all the four groups of patients. Haemolysis production was also significantly higher in (35.8%) Nephrology patients when compared to others. All the above 3 virulence factors were more in isolates of E.coli from (88.1%) Nephrology patients.

Refer to AMP Table

Virulence Factors:

- **MRHA:**
 - MRHA 9 (12.2)
 - MRHA 20 (29.9)
 - MRHA 20 (19.2)
 - MRHA 16 (12.8)

- **MSHA:**
 - MSHA 21 (28.4)
 - MSHA 15 (22.4)
 - MSHA 23 (22.1)
 - MSHA 18 (14.4)

- **Hly:**
 - Hly 12 (16.2)
 - Hly 24 (35.8)
 - Hly 29 (27.9)
 - Hly 26 (20.8)

Total 42 (56.8) 59 (88.1) 72 (69.2) 60 (48)

Antimicrobial Susceptibility Pattern

Antibiogram:
Done by Kirby-Bauer method of agar disc diffusion method as per CLSI standards

DISCUSSION

UTI is a result of interaction between an uropathogen and the host. Bacterial infections of the urinary tract are the commonest cause of both community acquired and nosocomial infections. Worldwide studies have revealed a preponderance of E.coli in urinary isolates i.e., 65.3% in Japan, 69% in Italy, 74% in Sweden, 75% in England and up to 90% in USA and as high as 94% in Israel.

Virulence Factors:
In the present study, E.coli causing UTI in Nephrology patients had expressed more number of virulence markers i.e. 88.1% in total. Out of this, the virulence markers of E.coli like P fimbriae (29.9%) detected by MRHA of 3% human erythrocytes and hemolysin (35.8%) were more in Nephrology patients. This could be due to the ability of P fimbriated E.coli to bind to the digalactoside expressed on renal tubular epithelium which results in upper UTI. Hemolysin contributes to tissue injury and favours the survival of E.coli in the renal parenchyma. The type P fimbriae detected by MSHA of 3% human erythrocytes was present equally in the isolates of all four groups of patients as both type 1 and type P fimbriae help in adherence of E.coli to uroepithelial cells in the lower urinary tract.

Rebecca Naveen et al. had reported hemolysin production (40.7%) and MSHA of (42.4%) were reported by Rakshit et al. reported 41.36% haemolytic and 30.9% showed MRHA. A study by Johnson et al. showed MRHA in 58% of urinary isolates.

Antibiotic Sensitivity Pattern:
In the present study, 3rd Generation Cephalosporins like Cephotaxime and Ceftriaxone showed that 84.6% of E.Coli isolates were susceptible. The highest sensitivity rate of 99.8% was reported by Dr. Sanaalet al. 97% by Maria et al. Others had reported 91% by Hooton et al., 89.8% by Rebecca et al., 82% by Acharya et al.

CONCLUSION:
Thus it is concluded that, the methods of detection of these virulence markers is reasonably easy and screening them in microbiological laboratory is a worthwhile, since, there is a high prevalence of antimicrobial resistance among uropathogens, thereby it helps in early detection and appropriate antimicrobial therapy of urinary tract infection which will reduce the morbidity.

REFERENCES:
2) Textbook Of Bacteriology- Written & Edited By Kenneth Todar University Of Wisconsin-Madison, Department Of Bacteriology-2006.
4) Topley & Wilson, Vol II, Systematic Bacteriology.10th edn.
5) Urinary Tract Infection In Adults National Kidney And Urologic Diseases Information Clearinghouse [Date: 1/1/2001]
9) Dr.T.Sundararaj, Microbiology Laboratory Manual.
10) Konomans Color Atlas And Textbook Of Diagnostic Microbiology, P.No:82-86.
15) Urinary Tract Infections In Brescia, Italy: Etiology Of Uropathogenic And Antimicrobial Resistance Of Common Uropathogens Maria Antonia De Francesco, Giuseppe Ravizzola, Laura Peroni, Institute Of Microbiology And Virology University Of Brescia, Brescia, Italy 2006-07.