Management

Empirical test of the Capital Asset Pricing Model (CAPM) on the equity market of Nairobi

Dr. CHABI Bertin Enseignant Chercheur au CESAG

ABSTRACT This study targets testing the validity of the CAPM on an African market: the securities market of Nairobi. The CAPM is a model which allows explaining the relation between risk and yield on markets. Many investors are confronted with the challenge of determination with certainty of the yields on their investments as well as with the choice of an optimal portofolio. A model as the CAPM, through which is capable of predicting the yields on an investment, is then of a major importance. Thus the objective of this study was to verify if the CAPM can be applied to the equity market of Nairobi. The study is based on the computation of the beta and the positive yields of forty five listed companies on the Nairobi stock exchange. A model of simple regression was used. Tests of significance in a 95 % confidence level were made to appreciate the results of the regression. The analysis of the results revealed a non-applicability of the CAPM to the Nairobi's securities market. The results of the study do not confirm the basic theory of the model according to which there is a straight-line relationship between the risk and the yield of a stock.

KEYWORDS :CAPM, risk, yield, model, market

Introduction

The passage from the debts economy to the market economy of the capital was concretized in most of the Western countries by the development and the improvement of financial markets.

These financial markets are following a steady growth trend since the 1970s and allow somehow the economic agents to reconcile objectives that were considered opposed up to then.

These objectives are profitability, safety and liquidity identified in the 70s.

To obtain portofolios that reconcile a high level of profitability and a high level of safety (less risked), the actors of financial markets arrange several instruments called financial instruments of assets management.

In facts, Markowitz's works in the 1950s marked the starting point of the modern financial theory concerning the management of financial assets and the functioning of financial markets and which ended in the formalization in a rigorous frame of the relation between risk and profitability of securities.

A few years later, Sharp (1964), Lintner (1965); Mossin (1966) and Black (1972) developed a central model in financial theory which allows to describe in a simple way, the relation linking the profitability of financial assets and their risk: it is the Capital Assets Pricing Model (CAPM).

This model enjoys certain fame not only on the theoretical plan but also in practice. Indeed, it met a striking success with the practitioners because it allows them to quantify the risk incurred by the detention of a financial asset. Thanks to this double fame as well as thanks to the availability of the financial data of the western markets, the very important number of empirical studies trying to verify it's validity, this model in particular as regards the increasing straight-line relationship between risk and yield as well as the reliability of the beta as a financial analysis tool.

These various empirical studies were made up till now, in the great majority of the cases, on the developed markets. The question that arises is to know if it is possible, bearing in mind, the narrowmindedness of the African financial markets and especially the situation of latency in which they vegetate, to apply them this progress of the financial theory. Indeed, the African markets are for the most part small, embryonic and several times without true activity: they are growing markets (Tchemeni, on 1995). These markets are also weakly structured with an intrinsic chronic instability linked to the political cycle of their countries (Bourguinat H.Menaï; 1996).

Besides, it is necessary to underline the fact that, with the low correlations of the emergent financial markets with those of the developed countries as the integration of the developed markets increases and that the profits of the diversification tend to be reduced, the emergent stock markets appear as an interesting choice for the portfolio managers in search of new opportunities of investment (Assoé K. and allies, on 1999).

The empirical validation of the CAPM which was already the object of important searches in industrialized countries still remains relevant in the African countries because, from what we know, few works specifically dealt with this question. Thus the present study suggests fundamentally targeting the nature of the relation linking the systematic risk and the yield on the actions on an African stock exchange in particular that of Nairobi.

The answer to the question of the validity of the CAPM on the African market of Nairobi is interesting for many reasons. Above all, the market of Nairobi as any market of underdeveloped countries presents characteristics different from those of the big markets of industrialized countries (regarding organization and regarding size), what can be at the origin of different results. It is also important for the portfolio managers because it allows them to know if the risk of listed securities on the Nairobi stock exchange, such as it is defined by the model, establishes a suited measure on which they can base their decision of investment.

In this search, we adopted a quantitative methodology. This methodology was adopted in two stages. The first stage is dedicated to estimate the beta of every stock by the market model of Sharp (1963, 1964). The second stage is dedicated to the check of the straight-line relationship between the financial returns on assets and their systematic risk. Therefore we declined the yields on the securities on their respective beta obtained previously by the market model of Sharp.

The article is divided into three parts. The first one describes the theoretical frame of the research. The second presents the methodology. Finally, the results are presented and analyzed in the third part.

62

1. Littérature review

The modern theory of financial assets' valuation rises from the works of Markowitz (1956). It was focused around the model of the price formation and the relation between anticipated profitabilities (market model) and the financial model of valuation of assets (CAPM)

The equation of the CAPM, as follow, $E_{p} = R_{f} + (E_{*} - R_{f})\beta_{p}$ describes a relation of proportion between the profitability of assets and their beta. It quantifies the existing relation between the profitability of any asset and its undiversifiable risk represented by the beta, paid in the market price: E (Rm) - Rf > 0.

This equation is doubtless, one of the most assessed equations in finance. The first empirical applications of the CAPM, among which the classic Black, Jensen and Scholes (1972) and Fama and MacBeth (1973), gave results rather favorable to the model, securities with higher beta appearing to have higher profitability than the others.

After these first empirical results at the beginning of the seventies particularly favorable to the CAPM, first serious criticisms against the model, as well as the discovery of the first anomalies appear at the end of the same decade.

The most well-known criticism is surely the one of Roll (1977), which points out that; it is impossible to calculate with accuracy the profitability of the market portofolio, because it's hard to have better figures than proxies. As such the CAPM would not be testable; assuming the errors of measurement of the market portofolio can fake the results.

However, Stambough (1982) showed empirically that the tests of the model are in the facts, less sensitive to the choice of the proxy or the indication of market than what Roll (1977) was saying.

The theoretical analyses of Kandel and Stambough (1987) and Shanken (1987) went in the same direction, showing that errors of measurement on the market portofolio do not affect the results of the tests of the model unless the correlation between the market index used and the real market portofolio is low enough.

The most important criticism of the CAPM came from Reinganum (1981), Lakonishok and Shapiro (1986), Pitched and Ritter (1989), and especially from the virulent article of Fama and French (1992), which mention the non-existence of any relation between the beta of assets and their average profitability. The end of the beta was then, clearly announced by some authors.

Various expeditious articles were published into conformity with the CAPM criticisms among which; "Bye-Bye to beta" (Dreman, 1992) and "Is Beta Dead Again?" (Grinold, 1993).

But despite the fact that some authors were declaring here and there the death of the beta, other authors were presenting their results favorable to the CAPM. We can quote, essentially Black (1993), Chan and Lakonishok (1993), Pettengill, Sundaram and Mathur (1995) and Grunoly and Malkied (1996). Black (1993) considers besides that Fama and French (1992) did not give a good interpretation of their results. Both of them will revert afterwards and rectify their founding; it is not then necessary anymore to continue talking about the death of the beta, but more simply about the insufficiency of this one as a tool to measure the risk (Fama and French in 1996 and 1998). When it comes to recent studies, we noticed the one of Basu and Chawla (2010). This study aimed to test the validity of the CAPM for the Indian security market and to apply a modern assets evaluation tool to it. The Indian market is considered as developing and characterized by its volatility and growth. The results turn out to be against the CAPM. The authors concluded that the model fails in the explanation of the risk premium of the Indian market, and that it has a performance below expectations. According to them, this failure could be endorsed by factors such as the imperfection of the chosen stock index to approximate the market portofolio or it may be linked to effects of taxes. Finally they assert that although the CAPM is not

relevant in the evaluation the Indian financial market assets, the fact remains that it is a reference on which one can base the creation of alternative models.

One of the recent studies we can also quote is from Michailidis, Tsopoglou, Papanastasiou and Mariola (2006) which had targeted the objectives to test the validity of CAPM for Greece financial market and to make a contribution to the financial literature on the stock exchange of Athena. At the end of their study these authors concluded that the results of the performed tests did not allow them to reject in a formal way the validity of the CAPM on the Athena stocks exchange.

Javid and Ahmad (2008) in an empirical study tested the standard CAPM and concluded that the CAPM of Sharpe-Lintner is not adequate for the equity market of Pakistan.

2. Methodology

Within the framework of our research, we adopted a quantitative methodology.

This method is generally used by most of the researchers when it comes to verifying empirically a model. This methodology was adopted in two stages. The first stage consisted in verifying if the market model corresponds to certain criteria of statistical quality which may make it functional, that is if the betas estimated by this model deserve to be used. For that purpose, we are going to estimate the beta of every security by the market model of Sharp (1963, 1964):

$$r_{it} = \alpha_i + \beta_i r_m + \varepsilon_{it}$$

The estimations of the parameters α_{i} and β_{i} are obtained by the application of the Ordinary Least Squares method (OLS).

The errors ε_n are supposed to satisfy the usual hypotheses of the simple regression model.

$$1-E(\varepsilon_{it})=0$$
, the expected value of ε_{it} is 0

2- $\mathbf{E}(\varepsilon_{it})^{i} = \sigma^{i}$, the variance of ε_{it} is the same for all the values of t.

 $3-f^{E(\varepsilon_{it}\varepsilon_{it})=0}$ for $i \neq s$; ε_{it} are independent from one another.

4- $E(\varepsilon_{it}\varepsilon_{mt}) = 0$, ε_{it} is independent from Rm.

If the previous hypotheses are not respected, of many reliability problems will be noticed when it comes to the value of the regression coefficients in particular β_i

We are going to test the violation of the fundamental hypothesis of the market model.

So for the study of the market model, we applied several statistical tests of relative validity:

- 1-Test of normality
- 2-Test of autocorrelation
- 3-Test of heteroscedasticity
- 4-Test of specification
- 5-Test of stability.

The second stage consisted in verifying if there is an increasing straight-line relationship between the financial returns on assets and their systematic risk. Thus, we declined the average yields on every security on their respective beta obtained previously by the market model of Sharp.

Basing ourselves on the theoretical model of the CAPM, we have

$$E(r_i) = r_f + \beta_i [E(r_m) - r_f]$$

We define $r_i = E(r_i) - r_f$ and $r_m = E(r_m) - r_f$
We finally have $r_i = \beta_i r_m$

Now an obvious test of the traditional form of the CAPM is to adjust

$$r_i = \gamma_0 + \gamma_1 \beta_i + e_i$$

We suppose besides that:

$$E(e_i) = 0$$
 For every i

$$V(e_i) = \sigma^2$$
 For every i

$$COV(e_i, e_j) = 0$$
 For every i different from j

It follows, therefore, that the estimation of such a model should end up giving the following result: $\gamma_0 = 0$ and $\gamma_1 = r_m$

Within the framework of our study we shall make the hypothesis that dividends are immediately reinvested. Thus the yields on the security are calculated by difference of logarithm of the securities closing prices, or $r_{ii} = \ln(p_{ii} / p_{ii-1})$

The market portofolio was represented by the general index on the Nairobi stocks exchange.

The Kenyan Treasury note's rate was chosen to estimate the risk-free rate.

Based on these data we proceeded to treatments and come up with results that we analyzed.

3. The results

3.1. Statistical analysis of the yields

Among a total of 45 stocks listed on the Nairobi's stock exchange, 20 (that is 44 %) showed a negative average yield (Chart N°3 in appendix). Thus, in term of yields, the stocks are less performant. They are also very risky with an excessive volatility (very large standard deviations).

All these results are in accordance with those from the previous studies on emerging markets. Indeed, for Amato and ali (1999), '8 of 10 least successful markets in the World were emergent.

Besides Assoé and ali (1999) came up with the conclusion according to which ' the yields on emerging markets are relatively low and have a big volatility, this in comparison with the developed markets '. These results were also confirmed by Bourguinat H., Led (1996).

3.2. Estimate of the systematic risks and the specific risks

The Chart $N^\circ l$ includes alpha (specific risk) and beta (systematic risk) decliners as well as statistics and the probability related to the validity of the coefficients. It also include the statistics of Fisher and DW used respectively to study the stability and the autocorrelation.

Among the 45 stocks, 30 or (66 %) have a beta statistically valid; meaning thus that the market model which is used to estimate these coefficients beta would be a priori a model adapted for that purpose, this, before having access to the results of the fundamental hypotheses tests of the.

Among the 45 stocks that have been the object of our study, 26 is (57.77%) have a beta superior to the one (offensive stocks); These stocks over amplified the market fluctuations. The staying 42.23 % have valuable beta lower than the unity. We can conclude that these stocks are defensive. Thus they follow the market' trend.

As for estimated alphas, they are without exception statistically nil. Thus the market of Nairobi does not pay the specific risk. This fact seems to be very interesting in many respects. The non-significance of the alphas coefficients (zero specific risks) undeniably predisposes the beta obtained to be validly used for the CAPM and seems to be a good indicator for the model's validity. Indeed the traditional version of the CAPM opts for a nullity of the specific risk.

			Statistics		Meaning	Meanings		F-stat
	Alpha	Stupid man	Alpha	Stupid man	Alpha	Beta		
Arm	0.0006	0.4195	0.5953	0.5891	0.6429	2.7843	2.55655	0.28245
Bam	0.0006	1.0132	0.001	0.0485	0.5204	0.0054	2.46035	0.21849
Bbk	0.0005	1.4323	0.921	3.4811	0.3572	0.0005	1.89775	2.27342
Beats	0.0009	1.2853	1.1945	2.2628	0.2325	0.0238	2.08102	2.51463
Boc	0.0003	0.3651	0.5535	0.8463	0.58	0.3975	1.9398	2.63483
Bbo	-0.0004	0.5518	-1.0003	1.7538	0.3173	0.0797	2.48476	2.25208
Cag	-0.0005	0.057	-0.6875	0.1077	0.4919	0.9142	2.00199	0.04243
Coach	0.0003	0.0574	0.4775	0.1082	0.6331	0.9138	1.96123	0.52397
Cfc	0.0003	0.3172	0.5172	-0.6825	0.6051	0.4951	2.09455	2.61910
Ctr	-0.0003	0.2094	-0.3491	0.3057	0.7271	0.7599	1.93636	0.46329
Cmc	0.0005	0.3382	0.7369	0.6294	0.4613	0.5292	1.91474	2.30329
Cbe	0.0007	0.5275	0.7769	0.7557	0.4373	0.4499	1.99407	2.87131
Dtk	0.0003	1.5515	0.4672	3.1469	0.6404	0.0017	1.88217	0.02613
Dun	-0.0016	0.1901	-0.8005	0.1272	0.4235	0.8988	1.95357	2.21040
lga	-0.0006	0.0316	-1.2171	-0.0894	0.2238	0.9288	2.01269	2.48645
Eap	-0.0011	1.7784	-1.1043	2.4375	0.2696	0.0149	1.99426	0.00812
lac	-0.0006	0.5834	-0.25	0.3342	0.8026	0.7383	1.9491	2.85192
Kbl	0.0013	0.6652	2.5664	1.7061	0.0104	0.0882	1.92713	0.25365
Ept	0.0004	0.3858	0.4219	0.5611	0.6731	0.5748	1.98673	2.64086
xp	-0.0012	0.9175	-2.0557	2.1377	0.04	0.0327	2.25882	2.001047
ĭr	-0.0005	1.423	-0.6438	2.3791	0.5198	0.0175	2.47885	2.221623
Ifc	-0.0002	1.1781	-0.1986	1.5848	0.8426	0.1132	2.0016	2.231008
cd	0.0004	0.5223	0.2164	0.3696	0.8287	0.7117	1.95757	2.216080
ub	0.0002	0.6341	0.4552	1.5508	0.649	0.1212	1.85874	2.220365
uu Cak	-0.001	1.3285	-1.7388	3.039	0.045	0.0024	2.00107	0.006223
Cap	0.0003	0.0801	0.8875	0.3451	0.375	0.7301	2.22292	0.067558
Ccb	-0.0003	1.7636	-0.3624	3.8231	0.7171	0.0001	2.41104	2.213783
Cor	-0.0004	0.046	-0.9109	0.1307	0.3625	0.896	1.87051	0.074793
Cpl	-0.0008	1.97	-0.7044	3.6257	0.4813	0.0003	2.00187	2.909315
.im	0.0003	0.1028	0.3734	-0.1677	0.7089	0.8668	1.85431	2.216607
(ar	-0.001	0.3718	-0.5926	0.2846	0.5535	0.776	2.0005	0.257127
(blk	-0.0001	1.4247	-0.0563	1.8	0.9551	0.0721	2.5142	2.781704
lic	-0.0002	0.8212	-0.1044	0.586	0.9169	0.5579	2.03437	0.479983
Cel	0.0014	0.5865	2.7512	1.488	0.006	0.137	2.86487	0.021957
νmo	0.0002	1.187	0.1232	1.6172	0.902	0.106	2.12292	2.676386
iece	-0.0004	0.403	-0.4901	0.6729	0.6242	0.5011	2.08294	0.851376
/IP	-0.0004	1.1443	-0.4189	0.1622	0.6753	0.8711	1.9897	2.219592
ieve	-0.0006	1.9635	-0.3024	1.8469	0.7624	0.065	2.76206	0.093890
cb	0.001	1.4556	0.9982	1.8708	0.3183	0.0616	2.5843	0.028357
ag	-0.0004	1.4956	-0.1346	0.6026	0.8929	0.5469	2.60334	2.218889
Larly	0	1.8964	-0.0406	2.0339	0.9676	0.0421	2.58385	2.215390
Pts.	0.0004	1.2633	0.4323	1.6787	0.6656	0.0934	2.32237	2.955686
Jch	-0.0003	1.9502	-0.2387	3.0558	0.8114	0.0023	2.42311	0.004583
Jng	-0.0002	1.096	-0.0929	0.6194	0.926	0.5358	2.16863	2.219883
Vtk	0	0.9245	-0.0319	2.1569	0.9746	0.0312		

Source: from the data of the stock-exchange and monetary markets

64

Volume - 7 | Issue - 5 | May - 2017 | ISSN - 2249-555X | IF : 4.894 | IC Value : 79.96

3.3. Test on the violation of the fundamental hypotheses of the market model

3.1.3.1-Specificity

The Chart n°4 (in appendix) presents the results coming from the test for the appreciation of the specification. It is a Ramsey's parametric test which uses the ratio of similarity (LR) which is distributed as22X. On 45 stocks having been the object of analysis, more than half are badly specified.

3.1.3.2-Heteroscedasticity

The Chart n°5 (in appendix) presents the results of the heteroscedasticity test of White. It is a test which allows comparing the statistics NR ² with N being the number of observations and R ², the coefficient of determination in It emerges from results of the Chart n°4 that statistics NR ² is smaller than at a level of 0.05 significations.

We can conclude that the model is not homoscedastic. Thus there are heteroscedastic for all the stocks.

This result is in compliance with those obtained later on the small financial centers. It confirms those obtained by Belkaoui (1997) and by Fowler and ali (1979) which respectively used a sample of 45 companies and 69 listed companies on the stock exchange of Toronto. The same results have been reached by Giaccotto and ali (1982) and Karathanassis and Philipas (1993) on the Greek data.

3.1.3.3-Normality

The Chart n°3 (in appendix) presents the statistics of the test of Jarque-Bera as well as their probability. Under the null hypothesis of normality, this statistics of Jarque-Bera is distributed according to.

The results of our study brought the proof of no normality of the market model for all 45 stocks.

This question of no normality of the yields on the stocks, even if it tends to concern several financial centers and this without distinction of sizes, it is necessary to note nevertheless that it is more stressed on the small financial stock exchanges. This no normality of the yields does not seem to make relevant the criterion of average variance (Amato and Ali 1999)

3.1.3.4-Autocorrélation

The Chart N°3 presents the results of the tests of autocorrelation of Durbin Watson. It seems that there are a significant number of stocks which are auto-correlated.

Actually on a total of 45 stocks analyzed, 40 (approximately $89\,\%)$ are auto-correlated.

3.1.3.5-Stabilité

Charts N°3 and 4 present respectively the statistics of Fisher and the ratios of similarity taken from the stability test of the model. The results of each of these two various tests reveal that it appears the betas are not stable through time.

$3.4.\,Cross\,section\,test\,of\,the\,CAPM$

The last stage of our search is a test in cross section which consists in declining by least ordinary squares, the average yields on every stock in their respective beta obtained previously by the market model. It is an obvious test of the traditional form of the CAPM which consists in adjusting the equation: $r_i = \gamma_0 + \gamma_1 \hat{\beta}_i + e_i$

Chart N° 2: coefficients of the in cross section regression of the average yields on the estimated beta

DETAILED REPORT	
Statistics of the regression	
Coefficient of multiple determination	0.13581808
Coefficient of determination R^2	0.01844655
Coefficient of determination R^2	-0.00438027

Standard error	0.00116964
Observations	45
VARIANCE ANALYSIS	

VIIIUIIICEIII	imierono			
Regression		Sum of the squares 1.1055E-06	1	F-stat 0.80810854
Residues	43	5.8827E-05	1.3681E-06	
Total	44	5.9932E-05		
	Coefficients	Standard error	Statistics t	Probability
Constant	-8.5208E-06	0.00027496	-0.03098929	0.97542148
Variable X 1	-0.00020055	0.00022309	-0.89894857	0.3736866

Source: computed from the data of the stock-exchange and monetarymarkets

The results give us:

$$\tau(\hat{\gamma}_0) = 0.586$$

 $\tau(\hat{\gamma}_1) = 1.06$

We find besides: $\gamma_0 0.0001014$ and 0. 0002005 $\gamma_1 R^2 = 13.58$ %

The coefficients $\hat{\gamma}_1$ and $\hat{\gamma}_0$ obtained are statistically equal to zero.

Thus it comes out that the obtained results are unfavorable to the CAPM in its traditional version. Indeed, the relation between the profitability and the beta is not significant because the coefficient

 $1~\gamma$ is worth on average 0.0002005 and its statistics of Student is 1.06, leading to the conclusion that this average is not significantly different from zero. Consequently the stock market of Nairobi does not pay the risk-premium. Thus it seems clear that we do not manage to highlight a linear statistical relation between the yields and the systematic risks.

Finally, the explanatory power of the yields by the systematic risks is not very high because the average R 2 is worth 13.58 %, which is very low because the beta are supposed to be the only factor which determines the profitability and thus should explain them up to 100%.

The main conclusion we can get from this analysis seems to tend to the lack of evidence on the existence of a positive straight-line relationship between the yields on the stocks and their systematic risk.

3.5. Implications of the results

The various results obtained within our research have globally two implications. The first one is related to the attractiveness and stability of securities on the market of Nairobi on both the national and international savings. The second is linked to the applicability on this market of the modern tools of finance in particular the CAPM.

As regards to the capacity of attractiveness of the Nairobi's stock exchange, it emerges from the results of our researches that it is not significant. Indeed most of the stocks present simultaneously a very high global risk and a lesser yield which is even sometimes negative. Thus the rate of under-performance of the stocks on this market is very high. Moreover the results of our studies militate in favor of the non-existence of a risk premium on this market. All this added to the low rate of liquidity which characterizes modest stock markets establish a true handicap for the attraction of the investors eager for earnings. This instability of the savings remains the particular constraint for the financing of African economies in general.

When it comes to the applicability of the modern tools of the finance, we can sustain that the CAPM was unsuccessfully applied; that puts, in concern, the investors of this financial place who, should normally,

INDIAN JOURNAL OF APPLIED RESEARCH 65

Std.

0.03638 0.03703 0.0290 0.01814 0.0211 0.0160 0.0220

in this context of financializing world, use modern universal tools to manage their portofolios.

The non-validity of this model on this market makes complex the yield's forecast for the investors who, will have to turn their gaze to pale imitations in order to manage properly their assets.

Besides, the risk premiums of this stock exchange not being significantly different from zero, it is about to know if this statistical non-significance is either due to the disappointing performance of the stocks or to other factors. For that purpose, it is necessary to note that this result can be due to the particularity of the emerging markets' structure, which according to some investors, present high risks levels for a lesser yield in comparison with the developed markets. Moreover, this result is due to the low level of liquidity and sophistication of emerging markets as that of Nairobi.

Conclusion

This study, by trying to analyze the validity of a modern finance tool (the CAPM) on an African market allowed us to make a number of reports.

The first report is concerning the nature of the stocks. On this matter, our research allowed us to highlight the fact that the stocks on the Nairobi's market have a low performance and a very low liquidity.

Thus it was noticed that the underlying fundamental hypotheses in the market model with the data of the Nairobi's stock exchange are not decisive. We noticed that on a 0.05 degree, non-normality was an important problem for numerous stocks in the same way as the nonspecification with MCO Model valuers being biased and not suitable. There is not either significant linear correlation, though the beta's stability tests highlight a big temporal instability.

The market models is maybe not valid and even less for the periods of instability and speculation which occurs particularly in emerging markets.

Finally, our results revealed that there is no significant statistical relation between profitability and the beta, which is against the CAPM. Indeed the systematic risk would be capable of explaining the yields on the stocks only by 2.6 %.

Does the CAPM establish only a purely theoretical model without real practical application? Such a conclusion would be extreme.

On the other hand, the results of the present work underline that the use of the beta obtained in the conditions of this research (sample, frequency of daily calculation, market portofolio, hypothesis of temporal behavior of variables) to make choices of investment, to estimate the performance of the asset managers or estimate the cost of capital would lead to erroneous decision-making because of the absence of relation between the risks and the yields.

Appendices

Appendix 1: Statistics of share prices on the Nairobi's stock exchange.

Chart n°1: yields per stock

	KN_AR	KN_BA	KN_BA	KN_BA	KN_BB	KN_BB	KN_BO
	M01	M01	T01	U01	K01	001	C01
	0.00055	0.00058	0.0008	-0.0006	0.0004	-0.0004	0.0003
Mean	4	5	78	53	80	24	10
Median	0.00000	0.00000	0.0000	0.00000	0.0000	0.0000	0.0000
	0	0	00	0	00	00	00
Maximu	0.28768	0.74559	0.2748	0.09978	0.2308	0.1727	0.4382
m	2	4	45	9	15	52	55
Minimu	-0.40546	-0.72345	-0.4158	-0.5323	-0.2332	-0.2113	-0.4382
m	5	3	28	74	26	09	55

	0.00000	0.03703	0.0230	0.01814	0.0211	0.0160	0.0220
Dev.	7	2	66	1	04	90	48
Clearuma	-1.26567	0.06671	9.0722	-18.123	0 5564	-2.7274	0.0949
Skewne		-0.06671			-0.5564		0.0848
ss	3	9		09	16	96	59
Kurtosi		216.383	69.935	512.058		60.314	214.62
s	5	9	98	4	68	71	69
Jarque-	30737.1	284010	280539	162458	78215.	206756	279352
	6	3.		35	19	.5	6.
	-						
Probabi		0.00000	0.0000	0.00000		0.0000	0.0000
lity	0	0	00	0	00	00	00
Observa	1497	1497	1497	1497	1497	1497	1497
tions							
	KN CA	KN CA	KN CB	KN CF	KN CM	KN CT	KN DT
	_	_	_	_	C01	R01	К01
	-0.0004	0.00033			0.00051		0.00028
Mean	82				8	19	$2^{0.00020}$
Median	0.00000	0.00000		0.0000	0.00000	0.0000	2 0.00000
wieulali	0.00000				0.00000		0.00000
	č	-			-		~
Maximu				0.5978	0.40382		0.37156
m	6	4	57	37 :	2	19	4
Minimu	-0.6122	-0.4940	-0.3053	-0.1625	-0.28946	-0.6443	-0.3468
m	95	19	82	19	6	57	71
Std.	0.02705	0.02709	0.0356	0.0237	0.02745	0.0349	0.02526
Dev.	4				8		9
	-				-		-
Skewne	-1.9769	-0.1717	7.8122		2.97014		-0.0250
SS	49				1		65
Kurtosis	428.196	154.701	188.74	277.37	79.6727	313.49	63.9970
	7	4	53	15	9	58	2
Jarque-	1127789	143546	216724	472210	368886.	601553	232074.
Jarque-	112//09	145540	210724	472210	300000.	001333	232074.
		0		۲ F		2	0
Bera	1			~.	0	3.	8
Bera Probabil	1 0.00000	0.00000	0.0000	0.0000	0	0.0000	0.00000
Bera	1	0.00000	0.0000	0.0000	0	0.0000	~
Bera Probabil	1 0.00000	0.00000	0.0000	0.0000	0	0.0000	0.00000
Bera Probabil	1 0.00000 0	0.00000	0.0000	0.0000	0	0.0000	0.00000
Bera Probabil ity	1 0.00000 0	0.00000	0.0000	0.0000	0 0.00000 0	0.0000	0.00000
Bera Probabil ity Observa	1 0.00000 0	0.00000	0.0000	0.0000	0 0.00000 0	0.0000	0.00000
Bera Probabil ity Observa	1 0.00000 0 1497	0.00000 0 1497	0.0000 00 1497	0.0000 00 1497	0 0.00000 0 1497	0.0000 00 1497	0.00000 0 1497
Bera Probabil ity Observa	1 0.00000 0 1497 KN_DU	0.00000 0 1497 KN_EA	0.0000 00 1497 KN_EA	0.0000 00 1497 KN_EG	0 0.00000 0 1497 KN_EP	0.0000 00 1497 KN_EX	0.00000 0 1497 KN_FIR
Bera Probabil ity Observa	1 0.00000 0 1497 KN_DU N01	0.00000 0 1497 KN_EA C01	0.0000 00 1497 KN_EA P01	0.0000 00 1497 KN_EG A01	0 0.00000 0 1497 KN_EP T01	0.0000 00 1497 KN_EX P01	0.00000 0 1497 KN_FIR 01
Bera Probabil ity Observa tions	1 0.00000 0 1497 KN_DU N01	0.00000 0 1497 KN_EA	0.0000 00 1497 KN_EA P01	0.0000 00 1497 KN_EG A01	0 0.00000 0 1497 KN_EP T01	0.0000 00 1497 KN_EX P01	0.00000 0 1497 KN_FIR 01
Bera Probabil ity Observa tions Mean	1 0.00000 0 1497 KN_DU N01 -0.00158 3	0.00000 0 1497 KN_EA C01 -0.00058 5	0.0000 00 1497 KN_EA P01 -0.00109 0	0.0000 00 1497 KN_EG A01 -0.00056 7	0 0.00000 0 1497 KN_EP T01 0.00037 8	0.0000 00 1497 KN_EX P01 '-0.00117 9	0.00000 0 1497 KN_FIR 01 7-0.0005 29
Bera Probabil ity Observa tions	1 0.00000 0 1497 KN_DU N01	0.00000 0 1497 KN_EA C01 -0.00058 5	0.0000 00 1497 KN_EA P01 -0.00109 0	0.0000 00 1497 KN_EG A01 -0.00056 7	0 0.00000 0 1497 KN_EP T01 0.00037 8	0.0000 00 1497 KN_EX P01 '-0.00117 9	0.00000 0 1497 KN_FIR 01
Bera Probabil ity Observa tions <u>Mean</u> Median	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0	0.0000 00 1497 KN_EG A01 -0.00056 7 0.000000 0	0 0.00000 0 1497 KN_EP T01 5 0.000037 8 0.00000 0	0.0000 00 1497 KN_EX P01 -0.00117 9 0.00000 0	0.00000 0 1497 KN_FIR 01 7-0.0005 29 0.00000 0
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu	1 0.00000 0 1497 KN_DU N01 -0.00158 3	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0	0.0000 00 1497 KN_EG A01 -0.00056 7 0.000000 0	0 0.00000 0 1497 KN_EP T01 5 0.000037 8 0.00000 0	0.0000 00 1497 KN_EX P01 -0.00117 9 0.00000 0	0.00000 0 1497 KN_FIR 01 7-0.0005 29
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.000000 0 0.047150 9	0.0000 00 1497 KN_EG A01 -0.00056 7 0.000000 0 0.21772 3	0 0.00000 1497 KN_EP T01 0.00037 8 0.000037 8 0.00002 0 0 0 8	0.0000 00 1497 KN_EX P01 - 0.00117 9 0.00000 0 0 2 0.20294 1	0.00000 0 1497 KN_FIR 01 7-0.0005 29 0.00000 0 0 0.49365 8
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m Minimu	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.000000 0 0.047150 9	0.0000 00 1497 KN_EG A01 -0.00056 7 0.000000 0 0.21772 3	0 0.00000 1497 KN_EP T01 0.00037 8 0.000037 8 0.00002 0 0 0 8	0.0000 00 1497 KN_EX P01 - 0.00117 9 0.00000 0 0 2 0.20294 1	0.00000 0 1497 KN_FIR 01 7-0.0005 29 0.00000 0 0.49365 8 3-0.5065
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.000000 0 0.047150 9	0.0000 00 1497 KN_EG A01 -0.00056 7 0.000000 0 0.21772 3	0 0.00000 1497 KN_EP T01 0.00037 8 0.000037 8 0.00002 0 0 0 8	0.0000 00 1497 KN_EX P01 - 0.00117 9 0.00000 0 0 2 0.20294 1	0.00000 0 1497 KN_FIR 01 7-0.0005 29 0.00000 0 0 0.49365 8
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m Minimu	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.000000 0 -1.06471 1	0.0000 00 1497 KN_EG A01 -0.00056 7 0.000000 0 0.21772 3 -0.57145 0	0 0.00000 1497 KN_EP T01 0.000037 8 0.000037 8 0.00000 0 0 0.53062 8 5 0.79850 8	0.0000 00 1497 KN_EX P01 -0.00117 9 0.00000 0 2 0.20294 1 1 -0.61903 9	0.00000 0 1497 KN_FIR 01 7-0.0005 29 0.00000 0 0.49365 8 3-0.5065
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m Minimu m	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.000000 0 -1.06471 1	0.0000 00 1497 KN_EG A01 -0.00056 7 0.000000 0 0.21772 3 -0.57145 0	0 0.00000 1497 KN_EP T01 0.000037 8 0.000037 8 0.00000 0 0 0.53062 8 5 0.79850 8	0.0000 00 1497 KN_EX P01 -0.00117 9 0.00000 0 2 0.20294 1 1 -0.61903 9	0.00000 0 1497 1497 0.0005 29 0.00000 0 0.049365 8 3-0.5065 61
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m Minimu m	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.000000 0 -1.06471 1 1 0.03734 4	0.0000 00 1497 KN_EG A01 -0.00056 7 0.000000 0 0.21772 3 -0.57145 0 0.01804 3	0 0.00000 1497 KN_EP T01 0.000037 8 0.000037 8 0.00000 0 0 0 0 0 0 0 0 0 0 0	0.0000 00 1497 KN_EX P01 0.00117 9 0.00000 0 0 2 0.20294 1 0-0.61903 9 0.02195 7	0.00000 0 1497 KN_FIR 01 7-0.0005 29 0.00000 0 0 0.49365 8 3-0.5065 61 0.03061 2
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m Minimu m Std. Dev.	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.000000 0 -1.06471 1 1 0.03734 4	0.0000 00 1497 KN_EG A01 -0.00056 7 0.000000 0 0.21772 3 -0.57145 0 0.01804 3	0 0.00000 1497 KN_EP T01 0.000037 8 0.000037 8 0.00000 0 0 0 0 0 0 0 0 0 0 0	0.0000 00 1497 KN_EX P01 0.00117 9 0.00000 0 0 2 0.20294 1 0-0.61903 9 0.02195 7	0.00000 0 1497 KN_FIR 01 7-0.0005 29 0.00000 0 0 0.49365 8 3-0.5065 61 0.03061 2
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m Minimu m Std. Dev.	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1 -4.69607 1	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8	0 0.00000 0 1497 KN_EP T01 0.00037 8 0.00000 0 0.53062 8 0.03513 0 -5.51833 1	0.0000 00 1497 KN_EX P01 0.000117 9 0.00000 0 0.020294 1 0.02195 7 5 15.6481 7	0.00000 0 1497 1497 0.0005 29 0.00000 0 0.00000 0 0 0.049365 8 3-0.5065 61 0.03061 2 1 0.03061 2
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m Minimu m Std. Dev. Skewnes s	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1 -4.69607 1	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8	0 0.00000 0 1497 KN_EP T01 0.00037 8 0.00000 0 0.53062 8 0.03513 0 -5.51833 1	0.0000 00 1497 KN_EX P01 0.000117 9 0.00000 0 0.020294 1 0.02195 7 5 15.6481 7	0.00000 0 1497 1497 7-0.0005 29 0.00000 0 0.49365 8 3-0.5065 61 0.03061 2 -0.6180 88
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m Minimu m Std. Dev. Skewnes s	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1 -4.69607 1	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8	0 0.00000 0 1497 KN_EP T01 0.00037 8 0.00000 0 0.53062 8 0.03513 0 -5.51833 1	0.0000 00 1497 KN_EX P01 0.000117 9 0.00000 0 0.020294 1 0.02195 7 5 15.6481 7	0.00000 0 1497 1497 7-0.0005 29 0.00000 0 0.49365 8 3-0.5065 61 0.03061 2 -0.6180 88
Bera Probabil ity Observa tions <u>Mean</u> Median Maximu m Minimu m Std. Dev. Skewnes s	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 -1.60274 9 0.07635 1 -4.69607 1 368.643 0	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5 5 596.723 1	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0 487.076 6	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8 695.130 8	0 0.00000 0 1497 KN_EP TO1 0.00037 8 0.00000 0 0.053062 8 0.03513 0 0 0.03513 0 224.813 1	0.0000 00 1497 KN_EX P01 2.0.00117 9 0.00000 0 0.00000 0 0 0.020294 1 0.02195 7 3 15.6481 7 4	0.00000 0 1497 1497 7-0.0005 29 0.00000 0 0.49365 8 3-0.5065 61 0.03061 2 -0.6180 88
Bera Probabil ity Observa tions Mean Median Maximu m Minimu m Std. Dev. Skewnes s Kurtosis	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 -1.60274 9 0.07635 1 -4.69607 1 368.643 0	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5 5 596.723 1	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0 487.076 6	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8 695.130 8	0 0.00000 0 1497 KN_EP TO1 0.00037 8 0.00000 0 0.53062 8 0.03513 0 0 0.03513 0 224.813 1	0.0000 00 1497 KN_EX P01 2.0.00117 9 0.00000 0 0.00000 0 0 0.020294 1 0.02195 7 3 15.6481 7 4	0.00000 0 1497 7-0.0005 29 0.00000 0 0.00000 0 0.49365 61 5 0.03061 2 1-0.6180 8 8 3-0.5065 61 5 0.03061 2 1-0.6180 8 8
Bera Probabil ity Observa tions Mean Median Maximu m Minimu m Std. Dev. Skewnes s Kurtosis Jarque- Bera	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1 -4.69607 1 368.643 0 	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5 5 596.723 1 2198769 7	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0 487.076 6	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8 695.130 8 2998117 0	0 0.00000 0 1497 KN_EP TO1 0.00037 8 0.00000 0 0.053062 8 0.03513 0 0 0.03513 0 224.813 1 224.813 1 224.813 1 3.	0.0000 00 1497 KN_EX P01 0.000117 9 0.00000 0 0.00000 0 0.020294 1 0.02195 7 3 15.6481 7 4 435.325 4 1171931 1	0.00000 0 1497 7-0.0005 29 0.00000 0 0.00000 0 0.049365 8 3-0.5065 61 2 0.03061 2 1-0.6180 8 8 3-0.5065 61 2 1-0.6180 8 8 5 107.673 8 5 107.673 8
Bera Probabili ity Observa tions Mean Median Maximu m Minimu m Std. Dev. Skewnes s Kurtosis Jarque- Bera Probabili	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1 -4.69607 1 368.643 0 	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5 5 596.723 1 2198769 7	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0 487.076 6	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8 695.130 8 2998117 0	0 0.00000 0 1497 KN_EP TO1 0.00037 8 0.00000 0 0.053062 8 0.03513 0 0 0.03513 0 224.813 1 224.813 1 224.813 1 3.	0.0000 00 1497 KN_EX P01 0.000117 9 0.00000 0 0.00000 0 0.020294 1 0.02195 7 3 15.6481 7 4 435.325 4 1171931 1	0.00000 0 1497 7-0.0005 29 0.00000 0 0.00000 0 0 0.49365 61 5 0.03061 2 1-0.6180 8 8 3-0.5065 61 5 0.03061 2 1-0.6180 8 8
Bera Probabil ity Observa tions Mean Median Maximu m Minimu m Std. Dev. Skewnes s Kurtosis Jarque- Bera	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1 -4.69607 1 368.643 0 	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5 5 596.723 1 2198769 7	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0 487.076 6	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8 695.130 8 2998117 0	0 0.00000 0 1497 KN_EP TO1 0.00037 8 0.00000 0 0.053062 8 0.03513 0 0 0.03513 0 224.813 1 224.813 1 224.813 1 3.	0.0000 00 1497 KN_EX P01 0.000117 9 0.00000 0 0.00000 0 0.020294 1 0.02195 7 3 15.6481 7 4 435.325 4 1171931 1	0.00000 0 1497 7-0.0005 29 0.00000 0 0.49365 6 1 0.49365 6 1 0.49365 6 1 0.03061 2 1 0.6180 8 8 3 -0.5065 6 1 -0.6180 8 8 -0.6180 8 8 -0.6080 8 -0.00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bera Probabil ity Observa tions Mean Median Maximu m Minimu m Std. Dev. Skewnes s Kurtosis Jarque- Bera Probabili ty	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1 -4.69607 1 368.643 0 -368.643 0 -0.00000 0 -0.00000 0 -0.00000 0 -0.00000 0 -0.00000 0 -0.00000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.000000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.000000 0 -0.000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.00000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.00000000 0 -0.0000000 -0.0000000000	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5 596.723 1 2198769 7 0.00000 0	0.0000 00 1497 1497 -0.00109 0 0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0 487.076 6 1468397 6 0.00000 0	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8 695.130 8 695.130 8	0 0.00000 0 1497 KN_EP TO1 0.00037 8 0.00000 0 0.53062 8 0.03513 0 0.551833 1 224.813 1 224.813 1 3.00000 0 0 0.000000 0 0 0 0 0 0 0 0 0 0 0	0.0000 00 1497 KN_EX P01 -0.00117 9 0.00000 0 0.00000 0 0.02195 7 -15.6481 7 -435.325 4 1171931 1 0.00000 0 -0.00000 0 -0.00000 0 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.00000 -0.00000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000 -0.000000 -0.00000 -0.00000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 -0.00000000 -0.0000000 -0.000000000 -0.000000000 -0.0000000000	0.00000 0 1497 7-0.0005 29 0.00000 0 0.49365 6 1 0.49365 6 1 0.49365 6 1 0.49365 6 1 0.03061 2 2 0.03061 2 2 0.03061 8 8 107.673 8 8 107.673 8 107.673 8
Bera Probabili ity Observa tions Mean Median Maximu m Minimu m Std. Dev. Skewnes s Kurtosis Jarque- Bera Probabili	1 0.00000 0 1497 KN_DU N01 -0.00158 3 0.00000 0 1.57643 2 -1.60274 9 0.07635 1 -4.69607 1 368.643 0 -368.643 0 -0.00000 0 -0.00000 0 -0.00000 0 -0.00000 0 -0.00000 0 -0.00000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.000000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.000000 0 -0.000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.00000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.0000000 0 -0.00000000 0 -0.0000000 -0.0000000000	0.00000 0 1497 KN_EA C01 -0.00058 5 0.00000 0 2.28092 4 -2.32472 6 0.08916 8 -0.50348 5 5 596.723 1 2198769 7	0.0000 00 1497 KN_EA P01 -0.00109 0 0.00000 0 0.47150 9 -1.06471 1 0.03734 4 -16.4642 0 487.076 6	0.0000 00 1497 KN_EG A01 -0.00056 7 0.00000 0 0.21772 3 -0.57145 0 0.01804 3 -20.0933 8 695.130 8 2998117 0	0 0.00000 0 1497 KN_EP TO1 0.00037 8 0.00000 0 0.053062 8 0.03513 0 0 0.03513 0 224.813 1 224.813 1 224.813 1 3.	0.0000 00 1497 KN_EX P01 0.000117 9 0.00000 0 0.00000 0 0.020294 1 0.02195 7 3 15.6481 7 4 435.325 4 1171931 1	0.00000 0 1497 7-0.0005 29 0.00000 0 0.49365 6 1 0.49365 6 1 0.49365 6 1 0.03061 2 1 0.6180 8 8 3 -0.5065 6 1 -0.6180 8 8 -0.6180 8 8 -0.6080 8 -0.00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

66

Volume - 7 | Issue - 5 | May - 2017 | ISSN - 2249-555X | IF : 4.894 | IC Value : 79.96

	KN_HF C01			KN_KA K01		KN_KB L01	KN_KC B01
Mean	-0.00021	0.0003	0.00023	-0.00102	0.00027	0.00131	-0.00038
	2	96	7	3	1	2	6
Median	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000
	0	00	0	0	0	0	0
Maximu	0.42285	1.8613	0.20142	0.14518	0.14595	0.12783	0.44869
m	7	24	2	2	4	3	4
Minimu	-0.40546	-1.8886	-0.2711	-0.36170	-0.31481	-0.17499	-0.43903
m	5	80	53	0	1	1	2
Std. Dev.		0.0721 93	0.02090 3	0.02240 1	0.01185 4	0.01993 7	0.03710 7
Skewnes	-0.12269		-0.7788	-4.30332	-7.02780	-0.47233	0.67532
s	7		63	8	2	4	9
Kurtosis	33.6870	609.12	34.9001	70.9579	401.501	17.3462	50.2408
	5	44	6	6	3	8	7
Jarque-	58741.9	229158	63625.4	292685.	991767	12893.4	139316.
Bera	8	14	2	9	6.	3	0
Probabil	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.00000
ity	0	00	0	0	0	0	0
Observa tions	1497	1497	1497	1497	1497	1497	1497

.

	_	-			KN_MA R01	KN_NB K01	KN_NI C01
Mean	0.00142 4		-0.0008 05	0.00030 4	-0.00102 8	-7.95E- 05	-0.0002 05
Median	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
	0	0	0	0	0	0	00
Maximu	0.27033	0.05826	0.77258	1.09859	1.31730	0.30228	1.7793
m	5	9	4	7	1	1	37
Minimu	-0.23640	-0.69314		-0.4855	-1.29928	-0.39803	-1.7793
m	1	7		08	3	0	37
Std. Dev.	0.02015 0	0.01797 9	0.04202 9	0.03132 1		0.04047 6	0.0715 93
Skewnes	1.69833	-38.2229	0.64827	26.2526	-4.42525	-0.27740	-0.0261
s	2	6	8	9	0	1	23
Kurtosis	57.3074	1474.17	152.154	1050.47	320.318	16.1569	511.38
	3	1	6	9	4	9	03
Jarque-	184682.	1.35E+0		686105	6285484	10816.7	161208
Bera	0	8		89		1	53
Probabil	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
ity	0	0	0	0	0	0	00
Observa tions	1497	1497	1497	1497	1497	1497	1497

	KN_NM G01	_	_	_	_	_	KN_TP S01
Mean	0.00018 8	-0.00039 4	-0.0006 84	0.00100 5			0.0004 11
Median	0.00000 0	0.00000 0	0.00000 0	0.00000 0	0.00000 0	0.00000 0	0.0000 00
Maximu m	1.44210 9	0.42381 4	2.18163 2	0.86270 6	2.63905 7	0.94485 5	0.8909 73
Minimu m	-1.42044 8	-0.55004 6		-0.8718 39	-2.66722 8	-1.03270 8	-0.8649 97
Std. Dev.	0.06914	0.02060	0.00006	0.02070	0.12680	0.04760	0.0294
	2	3	0.08200 3	5	1	8	0.0384 77

Kurtosis	291.1 7	59	140.750 6	668.329 4	314.913 5	299.778	256	.538	365.43 57
	(0	4	5	1	1		57
Jarque- Bera	5180		118568 5.	276111 22	606852 2.		401 4.	001	819360 6.
Probabil ity	0.000 0	00	0.00000 0	0.00000 0	0.00000 0	0.00000 0	0.00 0		0.0000 00
Observa tions	1497		1497	1497	1497	1497	1497	7	1497
		KŊ	_UCH01	KN_U	NG01	KN_VIP()1	MAI	RKET
Mean		-0.0	00347	-0.000	233	-0.000392	2	0.00	1610
Median		0.0	0.000 0.000		000	0.000000)	0.00	0000
Maximur	n	0.5	48898 1.791		698	0.318454	ł	0.62	8299
Minimun	n	-1.0	040648 -1.6		438	-0.277632	2	-0.38	8616
Std. Dev.		0.0	49473	0.090	0.090440		:	0.02	0760
Skewnes	s	-6.0	01794	0.044124		0.176649	649 14.1		1547
Kurtosis		17	1.9085	211.9	674	20.14281		643	.3768
Jarque-Be	era	178	38552.	27219	934.	18338.30)	2564	5721
Probabili	ity	0.0	00000	0.000	000	0.000000)	0.00	0000
	ions	149		1496		1497		1498	

Source: computed from the data of the stock and monetary market

$\label{eq:appendix} Appendix 2: test on the violation of the fundamental hypotheses of the market model.$

Chart $n^\circ 3\text{:}$ Results of the Ramsey's specification test

	-				
Codes	N	F-stat	Prob	LR (ratio of similarity)	Prob
KN AR				0.103733	0.74739
M01	1497	0.103529	0.747680		5
KN BA				0.105958	0.74479
	1497	0.105749	0.745082		4
KN_BAT 01	1497	0.124718	0.724023	0.124963	0.72371 3
KN_BA U01	1497	1.245426	0.264607	1.247407	0.26404 8
KN_BBK 01	1497	0.298208	0.585089	0.298777	0.58465 0
KN_BB O01	1497	0.079020	0.778669	0.079176	0.77841 7
KN_BO C01	1497	0.135092	0.713261	0.135358	0.71294 0
KN_CA G01	1497	0.012463	0.911125	0.012488	0.91102 2
KN_CA R01	1497	0.711001	0.399247	0.712259	0.39869 5
KN_CBE 01	1497	0.015242	0.901760	0.015273	0.90164 5
KN_CFC 01	1497	0.232557	0.629705	0.233006	0.62930 4
KN_CM C01	1497	0.007109	0.932815	0.007124	0.93273 7
KN_CT R01	1497	0.065830	0.797543	0.065961	0.79731 1
KN_DT K01	1497	1.037907	0.308474	1.039630	0.30790 8
KN_DU N01	1497	0.087680	0.767189	0.087853	0.76692 4

Volume - 7 | Issue - 5 | May - 2017 | ISSN - 2249-555X | IF : 4.894 | IC Value : 79.96

KN_EA C01	1497	0.001304	0.971201	0.001306	0.971167
KN_EAP 01	1497	2.06E-05	0.996383	2.06E-05	0.996379
KN_EG A01	1497	0.123936	0.724854	0.124180	0.724545
KN_EPT 01	1497	0.118146	0.731103	0.118378	0.730800
KN_EXP 01	1497	2.488193	0.114915	2.491116	0.114491
KN_FIR 01	1497	1.580583	0.208873	1.582920	0.208341
KN_HF	1497	0.085349	0.770217	0.085517	0.769955
KN_ICD			0.994783	4.28E-05	0.994777
01 KN_JUB 01	1497 1497	4.28E-05 6.177831	0.013045	6.177473	0.012939
	1.407	1 50(5(0	0.101504	1.789286	0 101012
KN_KA KN_KAP		1.786768 0.000439	0.181524 0.983288	0.000440	0.181013 0.983268
01 KN_KBL 01	1497	0.056734	0.811768	0.056846	0.811551
KN_KCB 01	1497	0.170588	0.679649	0.170921	0.679295
KN_KEL 01	1497	0.082221	0.774349	0.082384	0.774092
KN_KO R01	1497	0.064642	0.799340	0.064770	0.799110
KN_KPL 01	1497	0.115758	0.733729	0.115986	0.733429
KN_LIM 01	1497	0.084021	0.771960	0.084188	0.771701
KN_MA R01	1497	0.049540	0.823896	0.049639	0.823693
KN_NB K01	1497	0.508227	0.476019	0.509161	0.475502
KN_NIC			0.804121	0.061657	0.803896
-	1497	0.061535		0.011732	0.913745
KN_NM G01	1497	0.011709	0.913846	0.011732	0.913743
KN_PAN 01		0.474000	0.491260	0.474876	0.490752
KN_SAS 01	1497	0.013182	0.908609	0.013208	0.908502
KN_SCB 01	1497	0.267489	0.605097	0.268003	0.604675
KN_SN G01	1497	0.004726	0.004726	0.004736	0.945135
KN_TO T01	1497	0.059124	0.807920	0.059241	0.807699
KN_TPS 01	1497	0.000624	0.980067	0.000626	0.980044
KN_UC H01	1497	0.006466	0.935922	0.006479	0.935847
KN_UN G01	1497	0.001421	0.969939	0.001423	0.969904
KN_VIP 01	1497	2.338408	0.126430	2.341272	0.125987

1e - 7	Issue	- 5 Ma	y - 2017 1				IC Value : 79.9
KN_	BAM0		0.003608	0.996399			
KN_	BAT01	1497	0.034859				
KN_	BAU0	1497	0.150961	0.859894	0.000202	0.30246	67 0.859647
KN_	BBK01	1497	0.010410	0.989644	0.000013	0.02086	62 0.989623
	BBO0		0.034658	0.965936			
KN_ 1	BOC0	1497	0.003563	0.996443	0.000004	0.00714	41 0.996436
KN_ 1	CAG0	1497	0.019752	0.980442	0.000026	0.03958	82 0.980403
KN_ 1	CAR0	1497	0.173166	0.841015	0.000231	0.34694	46 0.840740
Kn_	CBE01	1497	0.071269	0.931214	0.000095	0.1428	11 0.931084
KN_	CFC01	1497	0.004115	0.995894	0.000005	0.00824	46 0.995885
KN_	CMC0	1497	0.016644	0.983494	0.000022	0.03335	53 0.983462
ı Kn_	CTR01	1497	0.003063	0.996942	0.000004	0.00613	38 0.996936
	DTK0		0.005534	0.994481	0.000007	0.01109	91 0.994470
	DUN0	1497	0.004278	0.995731	0.000005	0.00857	74 0.008574
	EAC0	1497	0.068617	0.933687	0.000009	0.13749	97 0.933562
-	EAP01	1497	0.002332	0 997671	0.000003	0.0046	74 0.997666
	EGA0				0.000486	0.7280	97 0.694858
	EPT01		0.003532	0.095303	0.000004	0.7280	
_	EXP01		0.003552		0.000006		
	FIR01		0.001292	0.998709			
KN_ 1	HFC0	1497	0.126469	0.881211	0.000169	0.25340	03 0.880997
KN_	ICD01	1497	0.002606	0.997397	0.000003	0.00522	22 0.997392
KN	JUB01	1497	0.068195	0.934082	0.000091	0.1366	51 0.933957
	KAK0		0.001437	0.998564	0.000001	0.00288	80 0.998561
KN_	KAP01	1497	0.024230	0.976061	0.000032	0.0485	57 0.976014
KN_	KBL01	1497	0.207909	0.812305	0.000278	0.41653	37 0.811989
KN	KCB01	1497	0.031582	0.968912	0.000042	0.06328	88 0.968852
	KEL01		0.058763	0.942932	0.000078	0.1177	53 0.942823
KN -	KOR0	1/107	0.098062	0.906599	0.000131	0 19649	91 0.906426
	KPL01		0.104763		0.000140		
_	LIM01		0.051390		0.000068		
KN_ 1	MAR0	1497	0.039426	0.961342	0.000052	0.07900	06 0.961267
	NBK0	1497	0.040212	0.960587	0.000053	0.08058	81 0.960511
KN	NIC01	1497	0.043802	0.957145	0.000058	0.08777	74 0.957062
	NMG0		0.342548	0.710015	0.000458		
	PAN01	1497	0.007878	0.992153	0.000010	0.01578	87 0.992138
KN_	SAS01	1497	0.001705	0.998296	0.000002	0.0034	17 0.998293
KN_	SCB01	1497	0.020125	0.980077	0.000026	0.04032	29 0.980038
KN_ 1	SNG0	1497	0.021336	0.978890	0.000028	0.04275	57 0.978848
KN_ 1	ТОТ0	1497	0.032622	0.967905	0.000043	0.06537	72 0.967843
KN	TPS01	1497	0.012773	0.987308	0.000017	0.02559	97 0.987283
	UCH0				0.000113		0.918297
1		1497	0.085074	0.918449		0.17047	70
KN_	UNG0	1407	0.005060	0.074066	0.000034	0.0500	0.074016
1		1497	0.025968	0.974366	0.000141	0.05203	
II/N	VIP01	1497	0.105665	0.899733	0.000141	0.21172	25 0.899548

Codes	N	F-stat	Prob	К	NR ²	Prob-R ²
KN_ARM0				0.000111		
1	1497	0.083470	0.919923		0.167257	0.919773

Source: computed from the data of the stock-exchange and monetary markets.

References

- Amato A. et ali (1999), «Faut-il effectuer des investissements de Portefeuille dans les pays émergents? ». in revue du système financier.
- 2. Assoé, K. Inoussa R. et L'Her, J.F. (1999), « Doit-on investir dans les marchés émergents ? », in Revue internationale de Gestion, volume 3, numéro 4, hiver 1998-1999.
- Basu D. et Chawla D. 2010. « An Empirical Test of CAPM-The Case of Indian Stock Market», in Global Business Review 2010 11:209.
- Black F. (1993) « Beta and Return » in Journal of Portofio Management, 20, 8-18.
 Batteau, P. et Lasgouttes, V. (1999) « Modèles multifacteurs des rentabilités boursières » 5. ans Encyclopédie des marchés financiers, Tome 2, pp.1221-1257
- Bourgunat H., Menai N. (1998), « Forces et Faiblesse la reprise des Marchés Emergents.», in Revue Economique-vol 49, n°1 pp51-74.
- Broquet, C et ali (1997), Gestion de portefeuillle, Paris, Bruxelles, 3è éditions, De Broeck Université.
- -8. Chabi B. (2003): Applicabilité du Modèle d'Evaluation des Actifs Financiers (MEDAF) aux marchés financiers africains: cas des actions côtés à la Bourse des Valeurs de Nairobi au Kenya; mémoire pour l'obtention du diplôme d'études approfondie (DEA), Université d'Abomey-Calavi / République du Bénin
- Charest G. (1997), « Rendement, risque et portefeuilles », dans encyclopédie des marchés financiers, tome 2, pp1608-1659.
- Chopra N.et Ritter J.R. (1989), « Portofolio Rebalancing and the Turn-of-the-Year Effect », in Journal of Finance, 44, 149-166.
- 11. Cobbaut R. (1997), Théorie Financière, 4ème Edition, Economica.
- 12. Dreman D. (1992), «Bye-Bye to Beta», Forbes, 30, 148.
- Dusan Isakov (1997), «Tests du CAPM sur le marché des actions suisses».
 Fama, E. A. (2004). The Capital Asset Pricing Model/Theory and Evidence. The Journal of Economic Perspectives, Vol. 18.
- Fama E. F. et Frenche K. R. (1992), « The cross-Section of Expected Returns », Journal of Finance, 47, 427-465.-Fama E. F. et Frenche K. R (1996), « The CAPm is Wanted, Dead or Alive », Journal of Finance, 51, 1947-1958.
- 16 Fama E. F. et Frenche K. R (1998), « Value versus Growth : The International Evidence », Journal of Finance, 53, 1975-1999.
- 17. Goffin, R. (1999), Principes de Finances Modernes, Economioca, 2ème édition
- 18. Grinold R.C. (1993), «Beta is Dead Again?», Financial Analysts Journal, 49, 28-34.
- Grundy K. et Malkiel B.G.(1996), « Reports of Beta's Death Have Been Greatly Exaggerated », Journal of Portfolio Management, 22, 36-44.
- Javid, Attiya Y. & Ahmad, Eatzaz (2008). Test of Multi-moment Capital Asset Pricing Model: Evidence from Karachi Stock Exchange, PIDE-Working Papers, No. 49, Pakistan Institute of Development Economics.
- Karathanassis et ali (1996) « Une Analyse du modèle de marché en utilisant les données de la bourse de d'Athène ».
- Lakonishok J. et Shapiro A.C. (1986), « Systematic Risk, Total Risk and size as Determinants of Stock Market Return», Journal of Banking and Finance, 10, 115-132.
 Michailidis, Tsopoglou, Papanastasiou et Mariola. 2006. «Testing the Capital Asset
- Michailidis, Tsopoglou, Papanastasiou et Mariola. 2006. «Testing the Capital Asset Pricing Model (CAPM): The Case of the Emerging Greek Securities Market». International Research Journal of Finance and Economics, EuroJournals Publishing, Inc. 2006.
- 24. Pettengill G.N., Sudaram S. et Matur I. (1995), «The Conditional Relation between Beta and Returns», Journal of Financial and Quantitative Analysis, 30, 101-116.
- 25. Pouget Sebastien (2000), « Finance de Marché Expérimental:une revue de literature. »
- Reinganum M.R. (1981) « a New Ampirical Perspective on the CAPM», Journal of Financial and Quantitative Analysis, 16, 439-462.27. Shanken J. (1987), «Multivariate Proxies and Asset Pricing Relation: Living with the Roll Critique», Journal of Financial Economics, 18, 91-110.
- Stambaugh R.F. (1982), « On the Exclusion of Assets from the Two-Parameter Model: A sensitivity Analysis», Journal of Financial Economics, 10, 237-268.
- Tchemeni E. (1997) «Marchés émergents» dans Encyclopédie des marchés financiers, Tome1, pp915-930