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 1. Introduction
The Earth system absorbs the Sun's incoming short-wave radiation and 
reradiates, stores or exchanges it at different rates via natural processes 
described by [1] and [2]. For a planetary condition of thermal 
equilibrium, the amount of total outgoing, long-wave radiation must 
equal the total amount of incoming, short-wave radiation. The fact that 
the outgoing radiation does not equal incoming radiation suggests that 
the planet's global body temperature varies both spatially and 
temporally. This is “climate variability”. Of course the news media 
reports that 97% of scientists rmly believe that the climate has in fact 
been warming in the recent past, and refer to this as “climate change” 
or “climate warming”. However there are also a reported 3% of U.S. 
scientists, along with some U.S. political representatives at federal and 
state levels who claim that no such global warming is occurring, or if it 
is, it is but a temporary aberration of a naturally occurring climate cycle 
that will be followed by a future cooling. On November 4, 2016, 193 
nations signed on to the “Paris Climate Accord” and the Arc de 
Triomphe was brilliantly illuminated with the statement “Accord 
DeParis c'est fait” (“The Paris agreement is done”) to celebrate the rst 
d a y  o f  t h e  a p p l i c a t i o n  o f  t h e  P a r i s  c l i m a t e  a c c o r d . 
<https://www.nytimes.com/2017/05/31/climate/qa-the-paris-climate-
accord.html>.These nations took the step of agreeing to reduce carbon 
emissions globally. 

A thorough discussion of the science surrounding global climate 
warming and cooling is presented by [3]. The authors point out that 
over periods of multiple decades the climate has been warming given 
the upward rise in temperatures reected in the Global Surface 
Temperature Anomaly curve based on the best available global surface 
temperature data dating back to the middle of the 19th Century. Further 
they conclude this rise in global surface temperature may likely be 
attributed to human activity and land use. The authors also point out 
that natural phenomena such as changes in solar activity and Earth 
orbital adjustment could lead to global cooling over periods of 
hundreds to thousands of years and could result into a next ice age. In 
our study we focus on both oceanic and atmospheric surface 
temperature time series and dispel the more common belief that the 
atmosphere is controlling the overall surface temperature of the Earth. 
We also reveal relationships between the overall trends of the Earth's 
atmosphere and ocean temperatures, and fossil fuel burning.The 
global ocean covers 71% of the Earth's surface and contains 97% of the 
planet's water. The atmosphere blankets the entire planet. However, the 
heat capacity of the uid phase of water is much different than that of 
either the uid phase of air or ice; as relates to hydrogen bonding. The 
H2O water molecule has a heat capacity and a latent heat of fusion 2nd 
only to that of NH3, and this confers thermal stability to ocean waters, 
such that the heat capacity of the upper 3.5 meters of the global ocean is 
equivalent to that of the Earth's entire atmosphere. Land has a low 
thermal conductivity, so heat reservoirs on the land surface and in the 
atmosphere are very limited. Here, the planetary heat balance 

components for the period from 1955 to 1998, based on the best 
observations at the time are presented in the pioneering work of [4]. 
Basically over that 44 year period, in units of 1022 Joules, these 
authors showed that of the total amount of incoming heat from the Sun: 
14.5 was absorbed by the global ocean; 0.9 was absorbed by the 
continents; 0.8 was the heat required to melt continental glaciers; 0.7 
was absorbed by the atmosphere; 0.3 was required to reduce the 
Antarctic sea-ice extent; 0.1 was needed to melt mountain glaciers; 
0.005 was required to melt northern hemisphere sea-ice; and 0.002 was 
required to melt perennial Arctic sea-ice. Thus these authors estimated 
that the ocean absorbs approximately 21 times as much as does the 
atmosphere. Thus, the global ocean absorbs ~ 85% of the Sun's 
incoming radiation. 

Given the several thousands of meters of oceanic depths, and the heat 
capacity of water, enormous quantities of heat are stored in the global 
ocean for long periods of time, with some of the stored heat released to 
the atmosphere. When the ocean releases heat and moisture into the 
atmosphere climate factors and conditions are altered and atmospheric 
eddies, aka “atmospheric storms”, form. Heat is then redistributed by 
the atmosphere, principally from the Equatorial zone to the Polar 
zones. Likewise oceanic “western boundary currents” (WBC's), such 
as the Gulf Stream, the Kuroshio, the Brazil, the Agulhas,  and the East 
Australia, move heat from Equatorial to Polar Regions and large scale 
vertical plane ocean circulations such as the southward owing deep 
branch of the Atlantic Meridional Overturning Circulation (the MOC) 
which moves cold, saline water from the Poles towards the Equator, 
thus having the net effect of increasing the meridional heat distribution 
in a poleward direction. The MOC [5] has been referred to as the 
Thermohaline Circulation (THC) of the ocean, that is the part of the 
circulation controlled by temperature and salinity variations, but the 
two are synonymous wherein the MOC is the zonal integral of the 
meridional velocity while the THC is a mechanism involved in the 
overturning. This begs the question: What does the overall heat content 
record actually mean in terms of any associated increases or drops in 
the surface temperature of the global ocean. In Figure 1, 3-month and 
12-month averaging is done to depict the seasonal and annual curves. 
In our study we will not do any block or moving averaging of the data. 
Rather we will employ a mathematical methodology that can 
decompose non-stationary and non-linear time series of data into 
temporal views of the data that we can work with mathematically. 

In Figure 1, we present seasonal and yearly anomaly data from the 
averages of global oceanic heat content data collected from the ocean 
surface down to 700 m over the period 1955-2010 using data obtained 
variously from the U.S. Navy, academic institutions, other countries 
and more recently, the National Oceanic and Atmospheric 
Administration (NOAA). The data were obtained from the NOAA 
National Ocean Data Center and processed and analyzed in [4] and [6]. 
Heat content is variable on seasonal and annual bases and rose from the 
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2 2relative heat anomaly of - 5 × 102 Joules to + 13 × 102  Joules (J), an 
3increase of 1.8 × 102  J (Figure 1). What is responsible for this rise in 

heat in the global ocean? Is incoming heat from the Sun responsible for 
the rise in heat content over the 56 year period? How does the oceanic 
heat reservoir redistribute its heat internally and externally? We 
address these questions below. It is of note here that the time series 
displayed in Figure 1 appear to be highly non-stationary and non-
linear. This is known to be true of global surface temperature data as 
well, as we will present and discuss below. 

Figure 1. The 3-month average (red line) and annual average (blue 
line) of the global ocean heat content anomaly from the    surface down 
to 700 m depth, 1955 through 2010. Reproduced with permission of 
Dr. S. Levitas (p.c.).

Recently, oceanic heat content studies from 1950 – 2015 have been 
reported upon in [7] and [8], and both include the global oceanic data 
derived from the Argo oat constellation that the U.S. and other 
nations established in 2000 and have steadily increased thereafter. 
Presently Argo has become a global array of 3,800 free-drifting 
proling oats that measure the temperature and salinity of the upper 
2000 meters of the global ocean, across all ocean basins.  The ARGO 
program has allowed continuous spatial and temporal monitoring of 
the temperature, salinity, and velocity of the ocean, with all data being 
relayed and made publicly available within hours after collection. The 
authors concur that up until about 1980 there was a gradual increase of 
heat content with signicant increases thereafter; as suggested in 
Figure 1. Moreover, the studies found that the ve ocean basins are 
sequestering heat at different rates down to 2000m with the Atlantic 
Basin having had the largest percentage increase with its rate of heat 
content being 3.5 times that of the Pacic Ocean Basin. The causes are 
not yet known.

In the study reported on below, we will extend beyond the temperatures 
of just the global surface atmosphere above land to temperatures of the 
surface of the global ocean as well. It could be argued that while much 
attention was paid to the global surface atmospheric temperature 
record, and rightfully so as greenhouse gases have built up in the 
atmosphere, not enough attention has been paid to the global ocean 
temperature record in-kind. We will investigate the variability of 
oceanic surface and atmospheric land surface temperatures and 
oceanic heat as documented in global time series records. We will 
investigate the variability of temperature and heat as documented in 
several well-known time series records and see if we can shed new 
insights into what these records reveal regarding the Earth’s Climate 
system. As alluded to above, we expect that the Earth’s surface 
temperatures, which dene our climate system, are created by and 
characterized by non-linear and non-stationary processes, so we will 
utilize an empirical, mathematical data adaptive technique which can 
deal directly with these types of data, to decompose the data. The 
Empirical Mode Decomposition mathematical methodology was rst 
introduced and detailed in [9] and shown to be able deal with both non-
linear and non-stationary time series; as opposed to more conventional 
mathematical methodologies, which cannot do so.

1. Empirical Mathematical Decomposition Analytics
Empirical Mode Decomposition (EMD) and its offspring the 
Ensemble EMD (or EEMD) is a two stage adaptive and temporally 
local time-frequency data decomposition mathematical method. 

Basically, the “ensemble” method adds white noise to the signals and 
involves multiple decompositions of the signals; all described below. It 
is noted that the detailed description of the EMD and EEMD methods 
can be found in a series of key papers, including [9], [10], [11], [12], 
[13], [14] and [15]. In the EMD, the Hilbert Transform, HT, [9] is 
employed. After a time series is decomposed into IMFs, natural 
amplitude-frequency modulated oscillatory functions, various 
methods can be applied to obtain instantaneous frequencies for each 
IMF that lead to time-frequency-energy representation of data. The 
challenge of frequency modulation in signals was rst discussed some 
seven decades ago in both [15] and [16]. More recently, a new 
methodology [17] was applied to calculate the accompanying 
imaginary part of an IMF and to obtain the complex expression of an 
IMF from which the instantaneous amplitude and frequency can be 
calculated as originally addressed in [9] and [10]. Thus, via the 
employment of the HT, a continuous time series of data x(t) is 
decomposed in terms of “intrinsic mode functions” (IMFs), cj, i.e.,

where rn is the residual of the data x(t), after n intrinsic mode functions 
(IMFs) are extracted from the instantaneous frequency, omega, from 
high frequency to low frequency. Intrinsic modes or IMFs, from j=1 to 
the nite number “j = n”, are determined via a “sifting” process and 
which constitute the limits of the integral (i.e. 1 to nite number “j = n”. 
We note that “instantaneous frequency” is dened in context and can 
be considered as the local mean for IMF cn. Clearly, The IMFs 
expressed in Equation (1b) are simple oscillatory functions with 
relatively slowly varying and non-negative amplitude and relatively 
fast changing and non-negative frequency at any temporal location. In 
practice, the EMD is implemented through a sifting process that uses 
only local extrema. From any data set, x(t)= rj-1, say, the procedure 
that we will employ below is as follows: 1) identify all the local 
extrema (the combination of both maxima and minima) and connect all 
these local maxima (minima) with a cubic spline as the upper (lower) 
envelope; 2) obtain the rst component h by taking the difference 
between the data and the local mean of the two envelopes; and 3) treat h 
as the data and repeat steps 1 and 2 as many times as is required until the 
envelopes are symmetric about zero within a small tolerance. The nal 
h is designated as cj. A complete sifting process stops when the residue, 
rn, becomes a monotonic function or a function only containing one 
internal extreme from which no more IMF can be extracted. To recover 
the original time series, one simply picks a time along the x axis and 
sums the values of the IMF modes at that same time throughout. The 
original data point will be the result of the addition. 

The impetus for the EEMD was that EMD was seen to have an IMF 
“mode mixing” problem, dened as any IMF consisting of cross-talk 
between oscillations of neighboring IMFs. Since real data generally 
contain a certain amount of random noise or intermittences, an 
important issue became apparent, basically whether the 
decomposition was sensitive to unknown noise; because the 
decomposition was solely based on the distribution of extremes; which 
occasionally lead to a difculty in the physical interpretation of IMFs. 
However, to solve this problem, the “Ensemble” - EMD (EEMD) was 
developed [12] and [17].  In this advance, and somewhat counter-
intuitively, multiple noise realizations were added to one time series of 
observations to mimic a scenario of multiple realizations from which 
an ensemble average approach for corresponding IMFs could be used 
to extract scale-consistent signals. The major steps of the EEMD 
method are: 1) add a white noise series to the targeted data; 2) 
decompose the data with added white noise into IMFs; 3) repeat Step 1 
and Step 2 nominally 100 times, but with different white noise series 
each time; and 4) obtain the (ensemble) means of corresponding IMFs 
of the decompositions as the nal result. The effects of the 
decomposition using the EEMD are that the added white noise series 
cancel each other, and the mean IMFs stay within the natural dyadic 
lter windows; as discussed in [12] and then [17] and [18]. This was 
found to eliminate mode mixing, to preserve the dyadic property of 
EMD, and to lead to stable IMF decompositions. Therefore, this 
advance has rendered the EMD/EEMD method to be very robust.

Before proceeding with our EEMD decompositions, we need to visit 
the denition of and the methodology of computing a ‘trend”. If you 
visually interrogate the three water level time series presented in 
Figure 3, there is a very strong sense of both N-S and N-L temporal 
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variations. As such, it is not clear that any conventional simple 
averaging process can be utilized to reect what information is buried 
in the multiple time series. This underscores the importance of clearly 
dening what is meant by trend. The denition of a trend proposed in 
[19] is: “the general drift, tendency or bent of a set of data”. IN [20], the 
denition of a “trend” is “a long term change in the mean”. But a 
difculty with this latter denition is determining what is meant by 
“long term”. What if there were variations in climatic variables that 
exhibit a 50 year cycle. If one were to have only 20 years of data, then 
the 50 year cycle would appear to be a trend.  But if there were 120 
years of data then the 50 cycle would go through 2.5 cycles and thus be 
evident. So in speaking of a “Chateld trend” (in [20]), we must take 
into account the number and span of observations available and then 
make a subjective assessment as to what constitutes “long term”. In 
[21], the denition alludes to “a trend in mean as comprising all 
frequency components whose wavelength exceeds the length of the 
observed time series”. However, for N-L, N-S datasets, none of these 
denitions ([19], [20] or [21]) are mathematically tractable. How can 
you mathematically compute something that you cannot 
mathematically dene? In 2007, a publication appeared in the peer 
reviewed literature which changed this confusing situation.

In our opinion the seminal publication of [22] put forward a logical 
denition of “a trend” which is appropriate for any N-S and N-L time 
series. The authors said: “a trend is an intrinsically determined function 
within the temporal span of the data, and a function in which there can 
be at most one extremum within that temporal span of data”. Being 
intrinsic, the method that should be employed to derive a trend has to 
be adaptive that is, it must suit the time span of the data. Thus the 
denition of trend in [22] does make a presumption of the existence of 
a time scale, related to the span of the data; a logical, mathematically 
based denition. All the above require¬ments suggested the EMD 
method as the logical choice for an algorithm that could determine the 
trend in any continuous data set. The ‘gravest’ intrinsic mode or rather 
the lengthiest mode of a time series that can be determined by 
employing the EMD methodology, one which can go up or down, or 
down and or up, in amplitude, so that there is only one respective 
maximum or only one respective minimum in this mode, then denes 
the “trend” of the time series. Once the trend of a time series is 
determined via the EMD, the corresponding de-trending operation can 
be implemented. With this denition of trend, the variability of the data 
over inherent, intrinsic time scales can next be derived. We will employ 
the advanced form of EMD, the Ensemble EMD (EEMD), as described 
above, to decompose the data set time series that we will study, and 
identify all intrinsic modes present in each, including the trend. 

In Figure 2 we see the EEMD of the Global Heat Content 3-monthly 
averaged time series over the 57 year period of 1955-2010. The 
decomposition reveals 7 intrinsic modes. IMFs are: C1, 3 - 6 monthly 

22with an “absolute amplitude” (AA) of 4(10 ) J; C2 annual to inter-
22 22annual and AA 2(10 ) J; C3 a 3 - 4 year cycle, with AA 1.5(10 ) J; C4 a 

2210-12 year cycle, with AA 1(10 ) J; C5, a 21-22 year cycle, and AA 
22 222(10 ) J; C6, a 32 -35 year cycle, and AA (0.7) (10 ) J; the gravest 

mode (red line, upper panel), a trend which has risen over the 57 year 
22 22 23record, from -3.5(10 ) J to +11(10 ) J, or 1.45(10 ) J. 

Figure 2. EEMD of the 3 month average global ocean heat content time 
series from the surface of the ocean down to 700m. There are 7 IMFs, 
with C7, the Trend, showing a signicant rise.

In Figure 3 we present the monthly averaged Sunspot Solar activity 
over the 162 year period from 1849 through 2009. In the 161 year 
record there are 9 IMF modes, including: a relatively at trend, the red 
line; Mode 8, a long period, multi-decadal cycle of ~155 years with AA 
of 20 events; Mode 7, 55 - 60 years and an AA of 30 events; Mode 6, 22 
years and AA of 30 events; Mode 5, 10-12 years, with AA of 80 events; 
and Modes C1, monthly, C2, 3-6 months, C3, annual, and C4, 2-3 
years, all displaying bursts of activity centered about 11 years, with AA 
of 30 events for C3 and C4, and 40 for C1 and C2. The overall trend 
(red line, upper panel in Figure 3) ranges from 50 to 51.5 events over 
the 161 year period of record. Thus, Oceanic Heat Content down to 700 
m is in sync with Solar activity for IMFs of 3 months, annual, 3-4 years, 
10-12 years, and 22 years. While the Sunspot trend is essentially at 
over 167 years, the Heat Content has risen signicantly over 57 years.

 
Figure 3. Monthly Sunspot activity from 1849 -2010. There are 
nine IMFs and the overall trend is basically flat.

2. Global Ocean and Land Based Atmospheric Temperature 
Anomaly Time Series
In Figures 4, 5 and 6 below, we present the basic monthly averaged 
time series and EEMD IMF decompositions, of Global Surface 
Temperature Anomaly data from 1850 through 2016 for the: Figure 4, 
the land-based atmosphere (the GLSTA); Figure 5, the global sea 
surface (the GSSTA); and Figure 6, the combined land-based 
atmospheric surface and the ocean surface (or the GLSTA + the 
GSSTA, the GSTA). These three time series are continuously compiled 
jointly by the Climatic Research Unit and the UK Meteorology Ofce, 
Hadley Centre: http://www.cru.uea.ac.uk/cru/info/. The credibility of 
the data are without question and are revered by the global scientic 
and technology communities. We note that the 167 year time series all 

th display 10 IMF modes with the 10 in each case being the overall trends 
of the land-based atmosphere, the ocean surface and the combination 

oof the two. The units of the vertical axes are +/- C.

The IMF modes of the GSSTA and GSSTA are essentially the same for 
the ocean surface and for the atmosphere over land, save for differing 
AAs. Modes 1 are bi-monthly to seasonal, Modes 2 are 6-monthly, 
Modes 3 are annual, Modes 4 are 2-3 years, Modes 5 are 4-6 years, 
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Modes 6 are 10-12 years, Modes 7 are 20-22 years, Modes 8 are 60-70 
years, Modes 9 are 105 years and Modes 10 are the overall trends. The 

otrend of the GLSTA Ranges from - 0.4340 OC in 1850 to + 0.7780 C in 
o2016 for a total rise of +1.2120 C. The GSSTA ranges from - 0.3297 

oOC in 1850 to + 0.4486 C in 2016 for a total rise of + 0.7783 oC. The 
GSTA or combined ocean surface and land surface rises in temperature 

ohave gone from - 0.3699 in 1850 to + 0.5501 C in 2016 for a total rise 
 oof + 0.9200 C. As such the ocean surface temperature, as represented 

via the GSSTA, has risen at a much slower relative rate as has that of 
that of the atmosphere over land, the GLSTA. The GLSTA rate of 

owarming from 1850 through 2016 is 7.257485 (10-2) C/decade. The 
GSSTA rate of warming from 1850 through 2016 is 4.66048 (10-2) 
o oC/decade. The combined GSTA is 5.550898 (10-2) C/decade.  

Figure 4. The EEMD decomposition of the GLSTA revealing 10 
modes. Upper left panel is the original time series. IMF 10 is the overall 
time series trend.

Figure 5. The EEMD decomposition of the GSSTA revealing 10 
modes. Upper left panel is the original time series. IMF 10 is the overall 
time series trend.

Figure 6. The EEMD decomposition of the GSTA revealing 10 modes. 
Upper left panel is the original time series. IMF 10 is the overall time 
series trend.

We note in Figure 4, that for the GLSTA, the relatively low frequency 
modes of IMFs 3 and 4 have AAs of 0.4 oC, IMF 5 has an AA of 0.2 oC 
and IMFs 6 and 7 have AAs of 0.1 oC. IMF 8’s amplitude ranges from – 
0.2 to + 0.35 oC, which is relatively considerable. The similar 
temperature IMFs are present in the GSSTA IMF decomposition 
shown in Figure 5 and for the combined temperature anomaly time 
series, the GSTA, in Figure 6. All IMF modes contribute in amplitude 
in a nominally equitable manner. What this implies is that high to low 
frequency variability contributes to a monthly averaged surface 
temperature signicantly at any particular time. One cannot ignore 
where the planet is in its journey of its natural, intrinsic, internal 
surface temperature variability. Thus periods of relative warming and 
or cooling occur naturally by the additive and or subtractive 
disposition of the natural variability of the physically based natural 
modes of variability in surface temperatures; all riding atop overall 
land, ocean and combined trends. These modes of variability are 
summarized in Table 1. The Trend end points for the GLSTA, GSSTA 
and GSTA are presented in Table 2. 
       
Table 1. IMFs of surface temperatures shown in Figures 4, 5, 6 (in 
units of Years). 

Table 2. Trends of GSTA, GLSTA and GSSTA as is (Figures 4, 5, 6) 
and Normalized to Zero Onset.

In Figure 7, we see in the upper left panel, that from 1850 to 1895 the air 
temperature over land actually decreased slightly (blue line), so there 
was a global cooling over land globally that persisted for about 45 
years. Then in 1895 the air temperature over land around the entire 
planet reached its prior value in 1850 and then continued to rise 
positively up through 2016. The same scenario was true for the surface 
waters of the global ocean, (red line), but with a lesser degree of 
cooling crossing from relative cooling to overall warming about 1880. 
The combined atmosphere and ocean time series (black line), follows 
closely that of the ocean and also moved from cooling to warming 
about 1880. The air over land is relatively cooler than that of the 
surface of the ocean until about 1915 when the lines cross and air 
temperatures on land rose at a more rapid rate then did those of the 
ocean. The three trend curves, all normalized to zero onset, are overlaid 
in Figure 7. The air over land and ocean surface trend curves diverged 
signicantly up through 2016. Table 2 presents the end points for the 
three Mode 10 trends and the zero normalized, adjusted end points. 
The global oceanic surface warming rate is shown in Figure 7 to be 
64.2% of that of the atmosphere over land or alternatively the surface 
warming over land is 155.7% greater than that of the warming of the 
surface of the global ocean. 

If one were to estimate global warming by only the increase of 
temperatures over land one would obviously overestimate the true 
overall planetary warming. By the same token, using the rise of the 
temperature of surface waters of the global would underestimate the 
total global rise. Obviously the ocean is a buffer against global heating 
but is signicant also. In [23], the famous 2007 IPCC Nobel Prize 
winning report, straight lines were drawn through the entire 
temperature anomaly time series, the GSTA, to estimate the rate of rise, 
or slopes of the temperature curves, of global temperatures. The IPCC 
straight line slope estimates were 0.045OC/decade over the full GSTA 
temperature record, 0.074 OC/decade over the prior 100 years, 0.128 
OC/decade over the previous 50 years and 0.177 OC/decade over the 
latter 25 years of the record. From the straight lines, the different rates 
of rise of temperatures can be estimated. If we were to do a similar 
straight line estimate, ours would be 0.073oC/decade for the GLSTA, 
0.047oC/decade for the GSSTA and 0.055oC/decade for the GSTA. 
However, the Trend curves shown in Figure 7 display periods of 
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IMF # 1 2 3 4 5 6 7 8 9 10

GLSTA  0.25 0.5 1 2-3 4-6 10-12 20-22 60-70 105 167

GSSTA 0.25 0.5 1 2-3 4-6 10-12 20-22 60-70 105 167

GSTA 0.25 0.5 1 2-3 4-6 10-12 20-22 60-70 105 167

Year oGSTA ( C) oGLSTA( C) GSSTA 
o( C)

oGSTA(
C)

GLSTA(
oC)

oGSSTA( C)

1850 -0.3699 -0.4340 -0.3297 0.0 0.0 0.0
2016  0.5501  0.7780  0.4486 0.9200 1.2212 0.7883 



cooling over the rst parts of the time series. Clearly straight lines are 
not the physically plausible manner in which trends of non-linear time 
series can be estimated. Only the EEMD method can do so, as 
explained above. We also provide the derivatives of the Trends, i.e., the 
slopes or time rates change of the Trends or Modes 10, in Figure 8.

Figure 7. The overall time series length trends of the GLSTA, the 
GSSTA and the combined GSTA. 

Figure 8. The time rate of change, or slopes, of the Trends of the surface 
temperatures of the planet or of the air over global land, the GLSTA 
(blue), of the surface of the global ocean, the GSSTA (red), and the 
combined time series, the GSTA (black) from 1851 through 2015 (as 
the two end points are lost in the calculation of the slopes or rst 
derivatives, of the lines).   

In Figure 8 we see the yearly time rates of change or slopes of the Trend 
time series presented in Figure 7. At the onset of the time series in 1850, 
all three surface temperature anomaly Trend curves are negative, 
indicating an initial cooling trend of the air over land and of the ocean’s 
surface as well. The time rate of the cooling of air over land was greater 
than the time rate of cooling of the ocean surface during this early 
portion of the temperature time series. In 1880 the temporal rate of 
warming of air over land exceeded that of the ocean surface which has 
continued to be the case through 2016. The trends in warming have 
obviously occurred at ever increasing rates. The air over land cools 
more rapidly and also heats more rapidly than do the ocean surface 
waters. The rates of warming of air and ocean surface have increased in 
a positive manner since the onset of the time series. The highest rates of 
warming occurred between 2015 and 2016. We next turn to the Fossil 
Fuel Burning time series dating back to 1751.

3.  Fossil Fuel Burning, Carbon Emissions and Co2

The Fossil Fuel Burning, i.e. the Carbon Emissions (CE) time series, 
beginning in 1751, is provided to us via Global CO2 Emissions from 
Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751-
2013. Conrming sources include [24] and [25]. All emission values 
are expressed in “million metric tons” of carbon (106 MTs or MMTs). 
To convert these values of carbon into units of carbon dioxide (CO2), 
multiply the fossil fuel burning values by 3.667.  (http:// 
cdiac.ornl.gov/trends/emis/tre_glob.html.). In Figure 9, the 263 year 
time series of CE, from 1751 through 2103, is presented. Year 2013 is 
the last year for which CE data is available to external users. Clearly 
from 1751 up until about 1850 not much CO  production was occurring 2

globally having ranged from 3 MMTs in 1751 to 54 MMTs in 1850. As 
shown in Figure 9, in the latter half of the 19th Century carbon 
emissions increased considerably; with a slight decrease during World 
War II, followed by a dramatic upsurge around 1949 up to 2013 values; 
with occasional increases or decreases on an annual basis in the overall 
CE time series. The temporal, annual rate of change of CE was 
essentially at from 1751 through the mid latter half of the 19th 
Century when the annual rate of carbon burning began to be spiky 
(Figure 9). Reasons for that undoubtedly are related to the advances in 
the industrialization of different parts of Europe and the emergence of 
industry in the U.S. In Figure 10, we present the EEMD of the 263 year 

CE time series by year and in MMTs of carbon emissions. 

Figure 9. The Carbon Emissions (CE) or Fossil Fuel Burning Time 
series from 1751 through 2013.

In Figure 10, we see that the 263 CE year time series, contains 8 
internal modes; IMF 1) annual with maximum AAs of 250 MMTs; 2) 
3-5 years with maximum AAs of 250 MMTs; 3) 12- 15 years with 
maximum absolute AAs of 250 MMTs; 4) 23-25 years with maximum 
AAs of 500 MMTs; 5) 85-95 years with maximum AAs of 500 MMTs; 
6) about 135 years and maximum AAs of 1600 MMTs; 7) about 260 
years and maximum AAs of 50 MTs; and 8) the overall 262 year trend 
from 3 MMTs in 1753 to 54 MMTs in 1850 to nearly 104 MMTs in 
2013. In Table 3, we pressent the end points of the curves presented in 
Figures 9 and 10.

Figure 10. The EEMD of the CE times series. There are 8 IMFs. IMF 8 
is the overall trend.

Table 4. The end points of the curves presented in Figures 9 and 10.

In Figure 11, the GSTA, GLSTA and GSSTA overall trends are plotted 
versus the CE raw data. The three surface temperature time series 
begin in 1850 while the carbon emissions curve dates back to 1751. To 
normalize the comparison of the Trends, we created plots of only 
“trends” of the time series shown in Figure 11 (but not shown). To 
create the CE trends the apparent “bumps” created by IMFs 1 – 7 of the 
CE time series have been subtracted out and all that remains is the 
Overall Trend of the CE data time series. The visual similarities in the 
Trend Curves of the Surface Temperature Data and the Fossil Fuel 
Burning are striking but not shown as the point is made by Figure 11 
that GSTA and CE curves essentially overlay. However we understand 
that visual correlation does not convey causality. In Table 4, we present 
the IMFs of the GLSTA, GSSTA, GSTA and CE curves. The CE IMFs 
are based on annual data whereas the temperature anomaly data are 
monthly, and therefore the CE IMF modes are all =/> than annual. In 
Figure 12a we present the annualized time rate of change of the raw 
fossil fuel CE curve (Figure 9) and in Figure 12b, we present the 
annualized time rate of change of the CE Trend (Mode 8). 
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Year GSTA 
o( C)

oGLSTA(
C)

oGSSTA ( C) Carbon Emissions
MMTs or MTs X 106

1751 N/A N/A N/A  3
1850 -0.3699 -0.4340 -0.3297 54

2013 0.5137 0.7265 0.4160 9776

2016 0.5501 0.7780 0.4486  N/A



Figure 11. The CE Annual Time Series from 1751 – 2013 versus: 
Upper Panel, the 1850-2016 GSTA Trend; Middle Panel, the 1850-
2016 GLSTA Trend; and Lower Panel, the 1850 – 2016 GSSTA Trend. 

Table 4. IMFs of surface temperatures shown in Figures 4, 5, 6 and 
CE's (in units of Years).

At this point in the discussion we have shown visual correlations 
between the trends in global surface temperatures and fossil fuel 
burning but not causality. One could proceed here with Cross-
Correlations of the Surface Temperature time series and the Carbon 
Burning trends as suggested in Figure 11. However we point out that if 
a family had a new human baby on Day 1, and the same family’s dog 
gave birth to puppies on Day 1, that by Day 1091, three full years later, 
if both the human child and the puppies were properly nourished, they 
all would have gained weight and grown in length, relative to their 
species. However their upward trends while visually correlated, would 
not be causally correlated; and therefore there is no attribution between 
the GSTA and the CE. We will now explore the latter possibility.
  
4. Cross-Correlations of Planetary Surface Temperatures and 
Fossil Fuel Burning

Next, we will attempt to relate the time series of the GLSTA and the 
GSSTA to the CE. As the CE time series is annual, so we must create 
annual time series of the surface temperature time series. Further, since 
the CE annual time series dates back to 1751 but the temperature time 
series date back to 1850, the CE time series must be cut to 1850 to be 
consistent with the temperature time series. Finally, it is of note that in 
our initial cross correlation calculations of CE and surface 
temperatures from 1850 through 2013, we nd very strong 
relationships between the CE curve to the GSSTA, GLSTA and GSTA 
trend curves. However as the time series values of temperatures, which 
began in 1850, could be criticized as being globally problematic, we 
only consider the more recent time series of global surface 
temperatures, and we choose time series commencing in 1950, when 
global values, which following WWII became routine, and are thus 
without question, regarding validation. We also will only utilize raw 
time series with no EEMD having been performed.

We note up front that proving absolute causality between surface 
temperatures and fossil fuel burning without running a global climate 
model that contains all sources and sinks of heat which could affect 
global surface temperature is a challenge. We also note that causality is 
the agency or efcacy that connects one process (the cause) with 
another process or state (the effect), where the rst is understood to be 
partly responsible for the second, and the second is dependent on the 
rst. In general, a process has many causes, which are said to be causal 

factors for it, and all lie in its past. However, here we can consider 
causality in the Granger Causal Relationship sense [26]. This approach 
has been used in studies in the eld of “econometrics” theory and 
applications to great success.  

In [26] the idea was presented that if series {xt} contributes causally to 
series {yt}, then past values of {xt} should improve predictions of 
series {yt}. This type of causality is established by rst modeling {yt} 
in terms of the past values of {yt} through an autoregressive (AR) 
process, then adding past values of series {xt} to create a second 
model.  If the second model is statistically better than the rst, then we 
have established causality in the Granger sense, the Granger Causal 
Relationship (GCR). We will t all of our models using Gaussian 
maximum likelihood estimators and our hypothesis tests will be based 
on the asymptotic normality of the parameter estimates and we will 
make use of the estimated standard errors based on “optimized 
likelihood” presented in [27]. All of our statistical analysis is 
performed using the R software and the codes are available from the 
authors.   

We rst consider establishing a causal relationship between the carbon 
burning time series, the CE, ({x }) and the global sea surface t

temperature time series, the GSSTA ({y }) in the latter half of the 20th t

century   Our rst model relates GSSTA to past values of GSSTA.  
Using Akiake’s Information Criterion (AIC; in [28]) we select the 
order of the auto-regression to be 3; that is that each year’s GSSTA is 
related to the values from the last 3 years.   We use the Box-Ljung 
“goodness of t” test, presented in [29] to verify that the AR model 
adequately models the autocorrelation (up to lag 20) in the GSSTA 
series;   the p-value of 0.1471 indicates that there is no signicant 
autocorrelation left in the residuals from the tted model:

(2)

From Figure 12a we can see that there appears to be a strong linear 
relationship between the sea surface temperature anomaly in year t and 
the carbon burning in year t-1. To establish the GCR, we now add the 
previous year CE value to the model.  The resulting model is given by 
(3):

We can test for statistical signicance of each tted coefcient using 
the asymptotic normality of the Gaussian maximum likelihood 
estimators [27].  We conclude with a p-value of 0.0009, that the 
coefcient of xt-1 is non-zero. In other words, the predictive model for 
GSSTA is statistically better if the previous year of CE is included.  We 
have thus established causality in the Granger sense. 
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IMF#s 
(in Yrs) 

1 2 3 4 5 6 7 8 9 10

GLSTA 0.25 0.5 1 2-3 4-6 10-12 20-22 60-70 115 167

GSSTA 0.25 0.5 1 2-3 4-6 10-12 20-22 60-70 115 167

GSTA 0.25 0.5 1 2-3 4-6 10-12 20-22 60-70 115 167
CE-

MMTs
1
 

3-5 12-
15

23-
25

85-95 135 260 262



Figure 12. a) left, the GSSTA vs. the CE, with a 1-year Lag; b) right, the 
GLSTA vs. the CE with a 1-year Lag.
 
We note that in this analysis we selected the data beginning in 1950 and 
there is no question concerning the quality of the global data.  
However, we nd that a similar analysis can be conducted starting at 
any point in the past. The same analyses beginning each decade in the 
rst half of the 20th Century, i.e., in years 1900, 1910, 1920, 1930, 
1940, and 1950, resulted respectively in p-values of 0.00005, 0.0002, 
0.00002, 0.0002, 0.003, 0.009, for the coefcient of xt-1. In each case 
we conclude the model using the previous year CE is statistically better 
than the AR(3) model alone; and the CE series signicantly improves 
predictions for GSSTA over the model based solely on past GSSTA 
values.  Regardless of starting time point in the 20th century one nds 
statistical evidence of a causal relationship between CE and GSSTA. 

Alternatively, one could attempt to establish that the GSSTA series 
“causes” the variability in the CE time series in the same manner as 
above.  However, the result is that the lagged value of GSSTA does not 
provide statistically signicant improvement in predicting the CE.  For 
example, for the data starting in 1950 a fourth order autoregressive 
model t to {xt} which also uses the previous year GSSTA (yt-1), 
results in a the test for signicance of the coefcient for GSSTA with a 
p-value of 0.65. We would then not conclude that GSSTA is causing 
outcomes for CE. 
     
In Figure 12b, we present the results of the the GLSTA vs the CE.  
Figure 12b consists of a plot of the GLSTA series on the vertical axis 
with corresponding points from the CE series in the previous year.  We 
again see visual evidence of correlation, which indicates the previous 
year CE may improve prediction of the values of the GLSTA series. As 
with the GSSTA series, we investigate Granger causality. We again use 
AIC to select an optimal order of auto-regression and use the Ljung-
Box test to verify that we have adequately model the autocorrelation in 
GLSTA. The tted model predictive model uses past values of GLSTA 
and the previous year CE to predict each year’s value of GLSTA {yt}, 
is given by (4) and presented in Figure 15:  (4) y_t=-5.5+0.3527y_(t-
1)+ 0.3543y_(t-4)+0.0016x_(t-1)+e_t. We next test to determine if the 
coefcient for xt-1 is statistically non-zero and nd a p-value of 
0.00000009, which indicates that CE provides statistically signicant 
improvement in predicting GLSTA after accounting for the 
information in the past values of GLSTA.  We have again established 
GCR. As is the case with the GSSTA series, the statistical analysis 
results in the same causality conclusion regardless of the starting 
decade in the 20th century.  
   
Proceeding in a similar manner we nd a predictive model for the 
GSTA ({yt}) based on past values of the GSTA and the previous year 
CE ({x}), as given by (5), (and not plotted as the plots are alike those in 
Figures 12a and 12b): (5) y_t=-7.30+0.4344y_(t-1)+ 0.32〖03y〗_(t-
4)+0.0022x_(t-1)+e_t. Once again the number of lagged values of 
GSSTA are selected via AIC and the Ljung-Box goodness of t test 
indicates that the autoregressive structure successfully models the 
autocorrelation in {yt}.  The estimated coefcient for xt-1 of 0.0022 
has an estimated standard error of 0.005, which results in a p-value of 
0.00001 indicating that the previous year CE is highly correlated with 
GSSTA.  We again conclude GCR.   

Discussion and Conclusions
Since the latter part of the 19th Century up to the present, the reported 
overall rise in global surface temperatures has been viewed largely as 
an atmospheric phenomena. However, we show that the global ocean is 
an important component in determining global surface temperatures. 
Via an empirical, mathematical methodology, we are able to 
decompose the non-linear and non-stationary data sets, and reveal 
buried, internal modes of variability of planetary temperatures over the 
past 167 years. We nd periods of both cooling and warming, both in 
the ocean and the atmosphere over land, with natural variability 
ranging from seasonal to annual to inter-annual to multi-year to 
decadal to multi-decadal to centennial. We nd that both the ocean 
surface and the air over land display non-linear trends depicting 
initially multi-decadal periods of cooling from the mid to late 19th 
Century, and then persistent warming throughout the 20th Century and 
into the 21st Century. Our calculated overall trends of the rates of 
warming differ signicantly from the estimate of the IPCC, with the 
oceanic rate less than two thirds of that in the atmosphere. It is special 
note here that while the overall trends of planetary surface trends 

indicate persistent and increasing warming (IMFs 10), the 9 higher 
frequency modes of variability can modulate the overall temperature 
record from seasonal to centennial time scales. Nonetheless, while the 
cars on the train may be oscillating with different modulated 
frequencies (periods), the train is still moving forward.    

Empirical relationships between billions of tons of fossil fuel burning 
and the overall trends of the global surface temperature anomaly time 
series both in the global ocean, the air above land and the combined 
global surface temperature anomaly time series emerge from our 
reduction of the non-stationary, non-linear data. Mathematical 
relationships between fossil fuel burning and surface temperatures in 
the oceans and over land are presented. The statistical relationship 
curves reveal strongly suggest that there is a one-year phase lag 
between carbon loading and planetary surface temperature rise, and 
that there is causal correlation in the Granger (1980) sense and that  
global surface temperatures can be predicted from fossil fuel burning a 
year earlier. Thus the conclusion is reached that there is attribution and 
further, if present fossil fuel burning is not curtailed, there will be 
continued warming of the planet in the future. 
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