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Background
Bayesian disease mapping studies have been used at univariate level 

[1-2].that is considering relative risk estimation for one disease  The 
multivariate disease mapping is a collection of two or more diseases, 
each corresponding to the same geographic region, in orders to know 

[3-8]information from the joint distribution of disease . These spatial 
models have been proven to be an effective tool for analyzing spatially 
related multidimensional data arising from a common underlying 
spatial process. This joint model gives understanding of diseases 
dynamics and of the relationships between diseases incidence jointly, 

[9-10].rather than mapping of each disease separately  The merit of joint 
modeling can be high if the considered diseases share risk factors or if 
the presence of a disease encourages the occurrence of other diseases.

TB is an opportunistic disease it will affect HIV patients easily and a 
growing consciousness is that millions of people will become infected 
in the coming years, needs swift and appropriate action 

[000]immediately . For comparison these diseases together, Bayesian 
approach using the Markov Chain Monte Carlo (MCMC) method were 
used to estimate the disease incidence of both diseases in all the States 
of India. This models considering fixed and random effects with 
covariate effects, interregional variability and the spatial variability 
are all considered. Bayesian analysis is the method where prior 
selection plays an important role in the inference. The default prior is 
non-informative but results in a proper posterior on the related 
parameter spaces. This method not only provides robust inference, but 
also provides improved estimation. Bayesian computation is 
providing more stable, efficient and produced stable estimates for each 
region in the spatially arranged regions. It also allowed for 

[11-12]unexplained heterogeneity to be investigated in the disease maps . 

Multivariate Condictional Autoregressive(MCAR) model proposed 
[4]by Besag et al.  incorporates both spatially structured and 

unstructured random effects in a single model. Several authors were 
explored multivariate spatial models for lattice data, adopting the 

[13-15].Bayesian framework as the natural inferential approach  
Venkatesan and Srinivasan proposed several spatial models for 
multivariate data based on general univariate conditional 
autoregressive (CAR) model for Tuberculosis and HIV disease 

[16-17]mappings . 

Material and methods
The number of cases for tuberculosis Y  and HIV Y  occurring in area 1i 2i

S  is recorded, where the set of areas {S }, i = 1,..,n represents a partition i i

of the region under study. For each area S , the expected number of i

cases E  and E  is computed using reference rates for the disease 1i 2i

prevalence. The multivariate collection of TB and HIV for disease 
mapping, for the same geographic region will give the joint 

distribution of disease pattern for the same area in order to 
understanding of diseases relationships jointly.

For comparison these disease together, spatial HIV and TB data 
obtained from National AIDS Control Society (NACO), National 
Family Health Survey (NFHS) data used for multivariate modeling. It 
consists of information on persons in the household with Tuberculosis 
and HIV, Literacy, Incomes and TB awareness. The population of all 
States are taken from Census 2001.  

Let Y , Y from the two diseases in area i. We assume that these counts 1i 2i 

arise from two Poisson distribution, Y  ~ Poisson(E θ ), k=1,2, ki ki ki

i=1,..,n where E , E  are the expected count for the Tuberculosis and 1i 2i

HIV/AIDS disease. The convolution model of MCAR is; 

(1)

here S  and U  are the structured and unstructured random effect in this ik ik

model. E  is expected count for diseases in area i,  is an intercept ik ka
term representing the baseline RR of both diseases across the study 
region, S  is the area and disease specific log relative risk of cases. log ik

RR of both diseases are spatially correlated across areas, and within 
area i, relative risks for TB and HIV/AIDS are also correlated due to 
dependence on shared area-level unmeasured risk factors. Correlation 
assumptions using an intrinsic bivariate CAR prior used for S  and U  ik ki

values. The MCAR random effects require a flat prior for intercepts. 
2For Income and Education, the normal independent N(0,σ ) prior were 

assigned. The unstructured random effects are assumed to have the 
2distribution of MVNor(0, σ ), whereas the structured random effects u

S  are assumed to follow the MCAR model with conditional variance ik
2σ Independent InvGamma (0.01, 0.0001) priors are used for the hyper c. 

parameters.    

The software used for multivariate conditional autoregressive model 
[18]analysis is WinBUGS that fits spatial models . It implements MCAR 

models for data that are collected within discrete regions and joint 
distribution of this smoothing is done based on Markov random field 
models for the neighborhood structure of the regions relative to each 
other. To fit the model in WinBUGS, observed count, expected count 
and covariate of education and income with adjancy matrix for India 
were included for analysis. The prior for this model is hyper prior i.e., 
Gamma prior which is distributed with a small precision, thus taking a 
larger neighborhood structure into account. Results are based on an 
MCMC simulation of 30,000 draws and an inverse distance-matrix.

RESULTS
The posterior summaries are presented in the following Table 1 and 2 
for TB and HIV for 32 States
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Table 1 Posterior Summaries of Relative Risk for Tuberculosis and 
HIV/AIDS

Table 1 shows the posterior expected relative risk for both diseases for 
all the state based on MCAR model. It includes mean, standard 
deviation, and credible interval. From the joint distribution of both 
diseases, the relative risk of TB varying from 0.05 to 5.76 and for HIV 
the relative risk is varying from 0.16 to 4.39. There is 15 states comes 
under relative risk of greater than one for HIV and TB. The largest RR 
for HIV found in State 14 and for TB in State 2. 

Table 2 Posterior Summaries for Parameters under MCAR Model

From Table 2, the posterior correlation between the spatially structured 
risk components for TB and HIV is 0.34; (95% CI: -0.22, 0.68), 
although correlation between the unstructured risk components is 0.19 
; (95% CI: -0.92, 0.96). The correlation between the total random effect 
for TB and HIV is 0.27; (95% CI: -0.19, 0.59), suggesting shared 
geographical pattern of risk between the two diseases.  The posterior 
mean for  for TB is -0.28, compared to posterior mean for  for HIV is -a
0.02. The posterior mean for  is 0.006. a1

Spatially unstructured heterogeneity and structured heterogeneity 
models are considered, in which the structured model normally 
distributed with multivariate normal (MVCAR) prior for the spatial 
random effects.  The precision tau for multivariate normal prior is high 
for both diseases comparing to MVCAR prior for the spatial random 
effects model. The credible Interval for MVCAR model is narrow and 
posterior median also close with posterior mean and adding random 
effects gives smoothed relative risk based on neighborhood structure 
of the States. This model pulls relative risk estimates towards the local 
mean, but in the Bayesian spatial unstructured heterogeneity model 
assumes MV normal prior that the variance is fixed in all the States and 
it pulls relative risk towards the global mean. It reflected in the map 
also. The relative risk in unstructured heterogeneity model smoothed 
towards in global mean. 

The posterior distribution for precision of  is 0.08 w.structured [TB]
while mean of  is 113 with standard deviation of 0.02 and 92.81 t.[TB]
respectively. The posterior distribution for precision of w.structured 
[HIV] t.[HIV] is 0.19 while for precision of  is 6.11 with standard 
deviation of 0.16 and 6.4 respectively. There was much shrinkage in 
the estimates from the structured heterogeneity on both the diseases. It 
was also observed in the maps. The variability of the relative risk is 
attributed more to the unstructured model than to the spatially 
structured model.

Figure 1 Posterior Expected RR for Tuberculosis under MCAR 
model

A map of the RR for TB (Fig.1), again classified into 2 groups in which 
area estimates larger than 1 relative risk appear in dark shade area. 
Lighter shades reflect the area of lower risk, and there is 17 States 
wards come under low risk area and 15 wards come under higher risk 
group which is scattered throughout India. 

Figure 2 Posterior Expected RR for HIV under MCAR Model

A map of the RR for HIV (Fig.2), classified into 2 groups in which area 
estimates larger than 1 relative risk appear in dark shade area. Lighter 
shades reflect the area of lower risk, and there is 17 States wards come 
under low risk area and 15 wards come under higher risk group which 
is scattered throughout India. 

 Tuberculosis HIV
 Mean SD Credible 

Interval
 Mean SD Credible 

Interval

RR1[1] 0.793 0.119 0.576, 1.040 1.004 0.147 0.720, 1.270
RR1[2] 5.760 3.120 3.060, 8.250 1.460 0.994 0.228, 3.781
RR1[3] 0.412 0.102 0.240, 0.642 3.850 4.047 2.095, 6.970
RR1[4] 0.879 0.960 0.052, 3.506 0.842 0.883 0.091, 3.132
RR1[5] 0.699 0.200 0.385, 1.163 3.022 2.510 0.398, 10.080
RR1[6] 0.604 0.160 0.365, 1.007 1.426 1.777 0.217, 7.111
RR1[7] 1.826 0.443 1.185, 2.844 1.055 0.836 0.240, 3.427
RR1[8] 0.176 0.047 0.110, 0.298 0.914 0.739 0.154, 2.841
RR1[9] 1.347 1.493 0.041, 2.458 0.278 0.260 0.048, 1.010
RR1[10] 0.182 0.040 0.116, 0.275 3.060 3.640 2.537, 5.280
RR1[11] 3.742 2.266 2.490, 5.670 3.800 3.530 2.095, 6.570
RR1[12] 4.760 3.885 .299, 23.710 0.708 0.513 0.144, 2.016
RR1[13] 1.209 1.300 0.064, 4.718 0.726 0.623 0.131, 2.147
RR1[14] 0.316 0.067 0.208, 0.465 4.390 5.420 3.180, 5.600
RR1[15] 0.380 0.085 0.230, 0.579  2.612 2.318 1.976, 3.370
RR1[16] 0.168 0.038 0.111, 0.256 0.785 0.616 0.137, 2.461
RR1[17] 0.793 0.119 0.576, 1.040 1.004 0.147 0.720, 1.270
RR1[18] 0.049 0.017 0.024, 0.087 0.233 0.137 0.059, 0.574
RR1[19] 0.252 0.065 0.175, 0.423 4.773 3.774 0.984, 7.860
RR1[20] 3.462 10.400 0.008, 26.030 1.252 3.394 0.013, 7.960
RR1[21] 1.306 0.228 0.968, 1.904 1.756 1.098 0.527, 4.538
RR1[22] 1.181 0.208 0.877, 1.710 0.496 0.341 0.159, 1.461
RR1[23] 0.490 0.132 0.310, 0.835 0.288 0.210 0.078, 0.819
RR1[24] 2.266 0.255 1.839, 2.798 0.393 0.139 0.176, 0.737
RR1[25] 4.554 6.210 3.023, 6.370 0.348 0.195 0.117, 0.739
RR1[26] 2.112 0.396 1.656, 3.104 3.666 10.170 1.944, 6.020
RR1[27] 0.145 0.037 0.092, 0.235 1.958 1.274 0.625, 5.797
RR1[28] 3.262 0.947 2.092, 6.279 0.449 0.362 0.063, 1.347
RR1[29] 1.681 0.349 1.141, 2.474 1.172 0.500 0.516, 2.420
RR1[30] 0.391 0.084 0.256, 0.612 0.337 0.291 0.062, 1.184
RR1[31] 1.459 0.273 1.052, 2.010 0.163 0.127 0.036, 0.494
RR1[32] 0.203 0.050 0.118, 0.309 0.275 0.194 0.035, 0.709

Parameter  Mean SD Median Credible Interval
-0.2864 0.1645 -0.2847 -0.6095, 0.0232
-0.0235 0.1556 0.0188 -0.3041, 0.2370
0.0060 0.0035 0.0056 0.0000, 0.0119
0.3448 0.2301 0.2481 -0.2220, 0.6863
0.1922 0.6699 0.3994 -0.9274, 0.9663
0.2786 0.2039 0.2377 -0.1962, 0.5987
0.0826 0.0263 0.0791 0.0431, 0.1449
0.1966 0.1619 0.1496 0.0733, 0.7352
0.1979 0.0979 0.1819 0.0669, 0.4271
0.8739 0.2581 0.8308 0.5002, 1.4870
15.1000 4.5520 14.3000 8.6390, 26.2400
7.6970 3.2140 7.4190 1.8960, 14.8800
0.0487 0.0493 0.0331 0.0045, 0.1824
0.8303 0.5224 0.6902 0.2502, 2.2110

 113.5000 92.8100 16.9300 85.7500, 362.5000
 6.1090 6.4170 0.9190 3.9360, 23.9400
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Table 3 Goodness of fit (DIC) for MCAR

The models comparison using DIC in Table 3, spatial structured 
heterogeneity model has the lower DIC than without unstructured 
heterogeneity model. The spatial structured heterogeneity effect with 
education model gives smaller DIC value for this data which implies 
that covariate education and spatial MVCAR plays important role. The 
fixed effect model is very high DIC comparing with spatial random 
effect model which shows the advantage and importance of Bayesian 
random effect in disease modeling. 

Figure 3 Box Plot for Tau and Alpha 

The box plot for tau and alpha shows the variation of two diseases and 
the precision tau represents the effect of TB, HIV and shared effect.  

Conclusion
In this work, modeling of multivariate disease mapping is explored for 
HIV and TB. This joint disease model combines HIV and TB disease 
maps, each corresponding to the same geographic region and the joint 
distribution of disease has the advantage of not only being able to rely 
on covariate  but also borrows strength between observation vectors as 
well. Structured random effects gives smoothed relative risk based on 
neighborhood structure of the States and this model pulls relative risk 
estimates towards the local mean, but in the spatial unstructured model 
pulls relative risk towards the global mean. 

The spatial autocorrelation between TB and HIV is 0.38 suggesting 
that shared geographical pattern of risk between the two diseases exist. 
The precision of structured model for TB is 0.08 while unstructured for 
TB is 113 with standard deviation of 0.02 and 92.81 respectively. The 
precision of structured for HIV is 0.19 while unstructured for HIV is 
6.11 with standard deviation of 0.16 and 6.4 respectively. However, the 
precision value of unstructured model is high for both diseases 
comparing to structured model. The credible Interval for structured 
random effects model is narrow for all the values and posterior median 
also close with posterior mean. There was much shrinkage in the 
estimates from the structured model on both the diseases. It shows that 
the estimates of structured random effects models provide shrinkage 
estimates and the variability of the relative risk is attributed more to the 
uncorrelated heterogeneity than to the spatially structured effects. 

The models comparison using DIC, spatial structured random effect 
model has the lower DIC than without unstructured heterogeneity 
model. The spatial structured heterogeneity effect with education 
model gives smaller DIC value for this data which implies that 
covariate education plays important role. The fixed effect model is 
very high DIC comparing with structured random effect model which 
shows the advantage and importance of Bayesian MCAR with random 
effect in disease modeling. 
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No Models D D̂ Dp DIC

1
MVNORUMVCARS

USIncEdu iiIncEdu

~,~

,** ++++ bba 257.95 220.35 37.59 295.54

2
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MVCARS

SIncEdu iIncEdu +++ bba 259.74 222.68 37.06 296.79

3
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MVCARS

SEdu iEdu ++ ba 256.66 220.98 35.68 292.34

4
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,*

MVCARS

SInc iInc ++ ba 257.92 221.63 36.29 294.21

5
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UIncEdu iIncEdu

~

,** +++ bba 262.63 222.76 39.87 302.50

6 IncE du IncE du ** bba ++ 1088.58 1086.55 2.03 1090.61
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