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( ABSTRACT ) This paper deals with a deterministic inventory model where the demand is the stock dependent for some time

immediately after the arrival of stock. The duration of the dependency is considered as a random variable with known
distribution. The EOQ is determined for the case when there is a limitation on the storage space, leading to L2-system. The feasibility conditions
and the sensitivity of the EOQ due to duration of the Stock Dependent Demand (SDD) and the stock dependency factor have been explored. The

conditions which recommend the use of L—2-system are also derived.
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Introduction

We reconsider the classical inventory problem with deterministic
demand in which the demand rate D is dependent on the stock available
at the beginning of the inventory cycle. For instance, an airline may
announce the availability of Q tickets from a specified date even
though there is steady demand. This induces accelerated demand as
some new customers may join the regular demand stream. This type of
stock dependency of demand will be temporary either at the beginning
or end of the inventory cycle. For instance, customers may rush to buy
items immediately when the stock position is made known to public.
In this case, the SDD occurs for a short time at the beginning of the
cycle. In some cases customers rush at the end of the cycle when the
stocks are likely to vanish and the accelerated sales takes place. This
type of demand pattern is known as stock dependent demand (SDD).

Rakesh Gupta and Prem Vrat (1986) wrote a basic article on this issue.
They have viewed SDD to be active during the entire cycle with
demand rate D(Q) = +Q, where Q is the order quantity and , are
constants. Baker and Urban (1988) and Datta and Pal (1990), have
formulated the demand rate as D(t) = +I(t), where I(t) denotes the on-
hand inventory at 't' and D(t) denotes the demand at't'. This is termed
as Inventory-Level-Dependent Demand (ILDD). During the last
decade several articles appeared in modeling this type of demand in the
presence of other factors like product deterioration, delay in payments,
inflation, price dependent demand and supply chain context. Work in
this area can also be found in Mandal and Phaujdar (1989), Gerchak
and Wang (1994), Pal, Bhunia and Mukherjee (2006), Sarkar and
Sarkar (2013), Chang, C.T. (2004).

Let Q° denotes the EOQ when the demand rate is constant and
shortages are not allowed. The inventory cycle will have length t, =
Q"/D.  When SDD is active in a cycle, keeping other things constant
the cycle length becomes shorter than t, and this leads to reduced
holding cost. In other words identification of SDD leads to a potential
gainin inventory cost.

Due to several reasons like price discounts, delayed payments or
inflationary conditions, the stockiest would order for higher quantity.
This sometimes creates a problem of physical storage when the Own
Warehouse (OW) of the management has finite capacity W. One
practice is to use a Rented Warehouse (RW) to keep the extra stock.
Hartley (1976) discussed this basic problem while Sarma (1983,1987),
used the term L,-system to indicate a two-level context. Pakkala and
Achari (1992) have studied the problem of two levels of storage under
varied back ground conditions. GSN Reddy and Sarma (2001) studied
a periodic review inventory problem with variable SDD and studied
the effect of SDD factor on the EOQ.In all the models with L,-system
the filling order of the warehouses is fixed as OW followed by the RW.
The depletion sequence is RW followed by OW. Recently Sarma and
Prasuna (2012) have extended the logic of L,- inventory system to the
L, -system. As a part of determining the EOQ for the n-warchouse
problem, they have proposed optimal filling and depletion sequences
using the principle of SPT sequencing (see Conway, Maxwell and
Miller (1967)).

In this paper we reexamine the classical EOQ problem for the L,-
system assuming temporary SDD at the beginning of the cycle. The
force of SDD is explained by a linear model and the conditions which
recommend the use of L,-system are derived and a decision support
system is developed.

2.Operation of the system

The inventory cycle starts with the receipt of an order for Q units and
consumed till the on hand stock comes down to zero. Assuming that
shortages are not allowed and that the lead time is zero, another order is
placed and the next cycle starts.

The following basic notation is used in developing the model.
Additional notations are used wherever required.

a) Q=Order Quantity in units

b) A=Fixed costofordering

¢) =Constantdemand rate

d) H=Unitholding cost per unittime in the OW

e) F=Unitholding costperunittimeinthe RW (F>H)

When alot of Q units is received and if Q > W, the OW is first filled with
W units and the rest is stored in a RW. When a demand arrives, it is
met from the RW either by a direct delivery at the RW or by bringing it
to the OW (for quality checking, packing etc.). Since F > H by
assumption, it is economical to empty the RW before drawing from the
Oow.

Then the EOQ for the L,-system is given by Hartley (1976) as

Q _ ‘2Aa+(1;—H)W2 "

A linear form of SDD is taken as D(Q) = ¢ +Q, where  denotes the
marginal linear effect of stock on the demand rate. In the light of the
result proposed by Rakesh Gupta and Prem Vrat (1986), Narasimhulu
et al (1991) have shown that for this type of demand the EOQ will be

_ 2
Q* = '2Aa+(F HW @
(H+2pc)
where ¢ denotes the unit cost of item. When both warehouses are
equally costly then F = H and there is no need to distinguish between
OW and RW so that (1) reduces to the Wilson’s classical EOQ formula
for the L1-system. Further if # = 0, the SDD effect vanishes and (2)

also reduces to Wilson’s formula. In the absence of SDD the inventory
cycle will be t0 = Q/a where Q is derived from (1).

2.The EOQ model with temporary SDD

While deriving (2) it is assumed that the SDD prevails throughout the
inventory cycle, which means the force of SDD influences the buying
pattern until the on-hand inventory drops to zero. Usually this is not the
case and the SDD will be like an episode that is realized for a short
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period u( <t,) immediately when stock is received. For instance if t, is
one month thenu can be taken as 0.25 month (aweek) after which the
influence of SDD vanishes and the demand occurs at the constant rate
a.

Lett, denotes the time at which the RW becomes empty and t, <t, since
the usage of RW is usually for a period shorter than the full cycle
length. Then two mutually distinct cases arise according as # <t and,
>t

1

Case-1: u<t,
The inventory situation is shown in Figure-1(a).The on-hand inventory
during the period (0,u) will be

I(0=(Q-W)—(a+pQ),0<t<u 3)

so that the inventory held during this period is A, _ [', I(t)df and this
reduces to

AL1=(Q-W)u- (a+BQYi /2.

From (3) the on hand inventory is I(«) at u the inventory held in RW
during (u,t,) willbe A,= {(Q-W)u-(a+pQ)}/2¢.

From the geometry of the inventory cycle we get t, =« + I(u)/a which
reduces to tw = {Q(1-fu)-W}/a. Now the inventory held in OW
during (0,t,) willbe A, =Wt,.

Figure-1(a): Inventory situation | Figure-1(b): Inventory situation

when SDD vanishes before the |when SDD vanishes after the RW
RW (shaded area) is emptied (v <| (shaded area) is emptied (u > 7,)
1)

¥

It can be shown that (4) is convex in Q when (1) > 0 and minimizing

(4) with respect to Q yields the optimal value Q;, given by

+  _ [24a+(F-H)W? 1/2

Q20 = [ F(1—Pu)? ]
%

It is easy to see that when F = H and B = 0, (5) reduces to the classical
EOQ formula.

Case-2: u> tw

The inventory situation is shown in Figure-1(b) from it follows that tw =
(Q-W)/(a+BQ) and the inventory held in RW during (0,tw) is Bi = (Q-
W) {2(a+BQ)}". The on-hand inventory during (0,u) is I(t) = Q -
(@tBQ)t, 0 < t < u which when integrated in this range gives the
inventory held B2 = {Qu - (a+BQ)t?/2}-B1. Again, during (Uto) the
inventory held in the OW can be worked out as Bs = {Q - (a+BQ)*}/2c..
The holding cost for the units in RW is FB; and for the items in OW the
holding cost will be H{B1 + B2}. The length of the inventory cycle in
this case will be to = u + {Q - (a+fQ)u}/o which reduces to Q(1-
Bu)/o.. The cost per unit time can be obtained as follows proceeding on
the lines of Case-1, wherethe subscript ‘b’ indicates the state [L> tw] on
the Lo-system.

Finally the inventory held in OW is A4 = W?/20.. Therefore the total
holding cost will be F{Ai1+A2} + H{A3+A4}. The cost of material in
the cycle is Q. Assuming that the selling price is p per unit, the
additional drop in inventory of BQu units leads to pBQu as extra
revenue. The sum of costs in this case during the cycle, after
rearranging the terms becomes

(F-H)(Q-W)* | HQ?

K2a(Q,t0) = {Aa + » +oo+ cQ} -Bu {pQ + FTQZ _

FQ*Bu (F—H)WQ}
2a 2

The cycle length in this context is to = {tw + W/a.) which reduces to to=

Q(1-Buy/a..

Adding the fixed ordering cost A and summing the components and
dividing by to gives the cost per unit time will be K2a(Q,to)/to. This is
given by

_  [Aa  (F-H)Q-W)®  HQ Bu _
K2(Q) = {Q+ 20 +3 +CQ} - (1_Bu){(p a+
FQU-puw) _ (Aa | Fau  (F-H)W®
e Rt 0

The terms in (4) are so arranged that the second term is proportional to
B and simply vanishes when SDD effect is ignored ( = 0) and (4)
represents the usual cost function for the La-system without SDD. It is

to be mentioned that by writing the term is written as {1 +

Bu
(1-Bu)
effect of SDD can be evaluated. The subscript ‘2’ in Kz, indicates La-
system and ‘@’ indicates the state[u < tv].

1
1-Bw)

} so that the terms involving  can be separated and additional

_ Aa ca a(F—H)(Q-W)? HQ(1-pu) Hapu? _
K@ 7{0(1—Eu)+(1—ﬁu) 200-F)+pQ) 2 2(-pu)
pafu
(1—/fu)} ©

Attempting to minimize this cost function with respect to Q leads to a
fourth degree polynomial in Q and a closed form solution cannot be

obtained. The third term in (6) can be written as {w} {1 +

2Q(1-pu)
oyt . . o
7} and by using the first order Taylor series approximation to{l +
BQ

-1
7} leads to the following simpler form of (6) when the terms with

and without 3 are segregated.

_ fAa | (F-H)@-W)*  HQ
bi(Q)f{Q + 20 +3 +CQ}
Bu _ (F-H)Q1-pu) | HQ1-Bw) _
) (1-pw) {(P c)a+ 2au + 2
Aa | Hau  (F-H)(Q-W)?
ffe e gy ™

Minimizing (7) with respect to Q produces the following first order
condition

—Aa (F-H)(@-W) [1 _ g] _ (F-m(@Q-W)? | HO-Bw) _ 0
Q*(1-pw) a-pw o « 2Q*(1-puw) 2
®)

The ratio B/a being very small can be ignored, in which case (8) can
solved to yield the EOQ asQ3;, given by

1/2

Q* _ [ZAa+(F—H)W2][ 2Aa+(F-H)W? ]
2b T [ Fa-pu)? (F—H)+H(1-fu)?

)

Again when F=H and 8 = 0 in (9) we get back to the classical EOQ
formula.

Remark: It may be noticed that in both (5) and (9) the denominator
denotes the effective holding cost that works out when SDD is taken
into account.
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The parameter U is independent of the cycle length and as such, we do
not know whether U<ty or U> tyina given context. This leads to the
choice between (5) and (9) for the optimal Q.

In the following section we propose a probability based method of
combining (5) and (9).

3. The EOQ based on Expected Cost function

Let 0 <m <1 denotes the probability that < tw. The value of 1 can be
estimated from past data on consumption or by an expert opinion (if no
data is available). Then the expected cost for theLr-inventory system
with temporary SDD will be given by

E{K2(Q)} =1 K2a(Q) + (1-n)K2n(Q).

Substituting the terms from (4) and (7) and after proper grouping we get
the following expression

A (F=H)(Q-W)? | HQ
BIK(Q) = 5+ (- {TH+ 2

}+CQ

+ (@) {re + LI W + o

Bu_ |HQU-pw) . | ((F-H)(Q-W)? &~ Hau
) (1—,5u){ 2 a Tl){ 20 + 2}}

Bu {;;(Pn)Q(kﬁu) (1-n)(F—H)(Q-W)? WFE’“}
+ - 2
(1-pu) 2 2au

Pu _ _Aa nF-H)W?
e (-0 ) 20 }

(10)
This function is convex in Q being the convex combination of two
convex combinations of (4) and (7). Minimizing (10) with respect to Q
gives the optimal order quantity Q* given by
. [2Aa+(F-myw?]1/?
Q= X ]
(1n
where X = {#F(1 — Bu)?+ (1 — m[H{A - Bu)? + (F-H)I}

When 3 = 0, automatically v and 7 are set to zero and X reduces (F-H)
so that (11) becomes the EOQ for the La-system without SDD. The
corresponding optimal cost can be found from (10) using (11) for Q5.

In the following section we derive few parametric conditions on the
inputs for the model, to ensure both feasibility and optimality under the
Lz-system.

4. Feasibility and Optimality conditions

At the end of deriving an expression for the EOQ, issues relating to the
feasibility and optimality conditions arise because it is assumed that a
RW is required.
The following observations can be made on the new result.

compulsorily

a) Lo-feasibility: For certain values of W, A, H, F, o, B and n
the formula given in (11) may lead to Q5 < W in which
case the use of Lr-system is at question. This calls for
examining the feasibility conditions for Lz-system in terms
of the input parameters.

b)  Le-optimality: Mere L»-feasibility ensures that the EOQ
exceeds W but among all possible Q values, we select the
one which minimizes K2(Q3) for the Lo-system. However,
it is possible that the cost evaluated at Q = W on the Li-
system has to be compared with that of La-system before
fixing the optimal order quantity as in (11).

Consider the following propositions.

nWAF-H{(1-pw)>~1} =~ HW?(1-Bu)?
2a 2a
A > A" is a necessary sufficient condition for Lo-feasibility.

Propositon-1:Define A" = Then

Proof:The necessity of the condition follows by requiring Q3 > W. In
order to establish the sufficiency of this condition, consider A = (A™+3)
for 8> 0. Using this (A*+8) in place of A in (11) and simplifying we
get sz _ Z(A+5)oc;(F—H)W2.
to  W2ZnF(1 - Bu)?+ (1—-m)[H{A - puw)?+ (F—H)]}+ 2a8,
which is same as {W?X + 2a8} in view of (11). Therefore it follows
that Q*?*= W2 + 2a.8/X. Since both X and § are positive it follows that
Q*2>W? or Q4 > W which is the condition for Lo-feasibility.

The numerator after simplification reduces

Hence the proved the proposition.
When F = H and n = 0, we get from (11) the EOQ for the L;-system
given as

Q1*=[ 24a ]1/2

H(1- w)y?

(12)

and the corresponding cost on the Li-system would be

HQi(1-puw)

N Aa Hapu? _ @-9apu
K@= {Qi apo Tt T Yot T Ao }
(13)

Propositon- 2: Let Ki(W) be the inventory cost when exactly W units
are ordered (on the Li-system). Then the La-system is both optimal
only if E{K2(Q") < Ky(W)

Proof:Any value of Q > W is only feasible for the Lo-sysem but need
not be optimal in the sense of minimizing the sum of inventory costs.
The Q% given in (11) provides the least cost on the  Lr-system among
all values of Q exceeding W. If we put F =H in (11) we get the EOQ
2Aa
H(a- pu?
and the value of u is taken as a known constant instead of a random
variable.

1/2
for the Li-system as [ ] because the effect of n is nullified

The optimal cost on Li-system with Q = W can be obtained from (6) by
putting F = H and there is no need for the expectation sign (E). This
gives

A4 HWGBY

- Hapu?  (p—c)apu
Ki(W)= {W(1—Bu) 2 }

2(1-pw) (1-pw)
(12)

This will be called the boundary costo be verified before choosing the
Ly-system. Thus even if A>A* and the EOQ for the La-system is
obtained, it would he optimal only when the corresponding cost is less
than the boundary cost.

Hence the proposition.

The following stepwise method can be adopted for implementing the
model.

5. Stepwise method and numerical results
The following procedure is helpful in decision making.
Step-1: Given the input parameters ¢, p, F, H, A,W,a, B, vand n,

compute A"
Step-2: If A > A" go to step-4; else go to step-3

Step-3: Compute Q; for the Li-system using (12) and E(Ki(Q})
using (13). Stop.

Step-4: Compute E(Q3) for the Lr-system using (11) and
E(K2(Q3) using (10)
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Step-5: Compute Ki(W) using (12). If E(K2(Q3) < Ki(W) the
optimal policy is to use La-system with EOQ =
E(K2(Q3); else the EOQ is W and optimal cost
Ki(W)

We will illustrate below the working of the model.

Illustraton -1:

Consider the parameters A = 100 per order, p = 32 per month, ¢ = 25
per month, H = 2.0 per unit per month, F = 3.2 per unit per month, o. =

800

units per month, W = 300 units, t = 20% of the usual cycle length,

B =0.2and n=0. With these values we get A* = 112.5 which is more

than A. So Li-system is recommended with Q7 = 287 (less than W) and
the optimal cost turns out to be 20486 which includes the material cost
of 20000. We can as well drop this fixed component and consider
E(Ki(Q7)) = 486.

Suppose we increase A from 100 to 200. Then the L>-system has to be

activated and we get

Q3 = 370 with cost 699 following the stepwise

procedure. The gain due to SDD is the difference between the costs
withp =0 and 3 > 0. Table-1 to Table-3 shows the results for different
combinations of A, B and n.

Table-1:Sensitivity of the model due to changes in the ordering cost A and the SDD factor and =0
Beta |[A=100 A =200
EOQ Cost B cost System Gain EOQ Cost B cost System Gain
0.0 |283 566 -- L1 - 366 810 833 L2 --
0.2 |287 486 -- L1 80 370 699 726 L2 111
04 |291 404 -- L1 162 375 582 614 L2 228
0.6 |295 320 -- L1 246 380 461 497 L2 349
0.8 {300 233 -- L1 333 385 334 376 L2 476
Table-2:Sensitivity of the model due to changes in the ordering cost A and the SDD factor and = 0.5
Beta A=100 A =200
EOQ Cost B_cost System Gain EOQ Cost B_cost System Gain
0.0 283 566 - L1 -- 366 810 833 L2 -
0.2 287 486 - L1 80 372 699 726 L2 111
0.4 291 404 - L1 162 378 582 614 L2 228
0.6 295 320 - L1 246 384 461 497 L2 349
0.8 303 235 233 L1, Q*=300|333 391 334 376 L2 476
Table-3:Sensitivity of the model due to changes in the ordering cost A and the SDD factor and =1.0
Beta |A=100 A =200
EOQ Cost B cost System Gain EOQ Cost B cost System Gain
0.0 |283 566 -- L1 - 366 810 833 L2 --
0.2 |287 486 -- L1 80 373 699 726 L2 111
04 |291 404 -- L1 162 381 582 614 L2 228
0.6 (302 322 320 L1,Q* =300(246 389 461 497 L2 349
0.8 307 236 233 L1,Q* =300(333 398 335 376 L2 476
From the above illustration the following observations can be made. " ?(‘O\ffasges and aﬂ(?gg;f)m/‘\n;e:eas? "_ﬂte_’ OPdSE{\RCIHs 20(13% 175'; 810f« deterionatingit
. . . . Lv.d.Sarma y icterministic order level inventory model for deteriorating items
1. The EOQ 15 fOl_'md to 1nc'rease as the force of SDD () INCreases. with two storage facilities,EuropeanJoumalofOperationryal Research, 29(1), 70-7g3.
When the ordering cost A increased from 100 to 200 the EOQ atall 11. K.V.S.Sarmaand Prasuna,E (2012), An Economic Order Quantity Model with n-levels
values of was feasible for the L,-system, which is an expected of Storage, International Journal of Inventory Control and Management, Vol-2(1), 131-
result. The gain due to SDD is also found to increase, when 146. . : PN
. . g > 12.  Mandal, B.N and Phaujdar, S (1989), An inventory model for deteriorating items and
mcreases. stock-dependent consumption rate, J. Opl. Res. Soc, 40(5),483-488.
2. The parameter hasa very marginal effect on both the EOQ and the 13. Pakkala T.P.M and Achari,K.K. (1992), A deterministic inventory model for
. . ? . deteriorating items with two warehouses an finite replenishment rate, European Journal
optimal cost. Itsimpactis seen only higher values of and. of Operational Research, vol 57, 71-76.
3. Thegaindueto SDDis also found to increase as increases. 14. Rakesh Gupta and Prem Vrat (1986), Inventory models for Stock Dependent
Consumption rate, OPSEARCH, 23(1), 19-24.
. 15. C W. Richard, Maxwell L. Willi d Miller W. Louis (1967), Th f
Conclusions | gy L V. L 197 Ty o
The classical EOQ needs suitable changes when the demand rate 16.  Y.C.Narasimhulu, K.V.S.Sarma and R.V.S.Prasad (1991), A lot size inventory model for

temporarily depends on the displayed stock. In this process, a higher
lot size may become economical and hence this needs relaxing the
constraint on storage space. We have proposed new formula to handle

this

situation by hiring a rented warehouse. A decision support

mechanism is developed to determine the EOQ.
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