

1. Introduction

Let G be a molecular graph .The vertex-set and edge-set of G denoted by V (G) and E (G) respectively. The number of vertices of G, adjacent to a given vertex v, is the degree of this vertex and will be denoted by d_v A topological index is a number related to a molecular graph invariant automorphism of Graph. The ability of elemental carbon to form extended two dimensional sheet structures with extremely strong bond makes it a stable material to produce isolated objects . The sheets can be resealed notionally to form a cone or horn [1].Nanocones are discovered in 1994 [2].Nanocones are carbon based structures formed by introducing 60° inclination defects in two-dimensional graphene sheets. The graph of this molecule consists of one pentagon surrounded by layers of hexagons [3]. The nanocone structure of CNC₅[1] is shown in figure (1). The vertex-degree based multiplicative topological indices for molecular graphs are studied by [4-12]. Our notations are standard and mainly taken from books of graph theory [13-14]. The partitions of edges (2,2),(2,3) and (3,3) for nanocones CNC, [n] where n=1-5,10,12 and 20 are taken from [4,15].

In carbon nanocones $\text{CNC}_k[n]$ the parameter k defines the length of the inner cycle and n defines the number of layers of the graph. The carbon nanocones $\text{CNC}_s[2]$, $\text{CNC}_s[4]$ graph consists of pentagon as its core surrounded by two and four layers of hexagons respectively fig (2). The definitions for degree-based topological indices are taken from [16-20]. In this paper the multiplicative version of SK (G), SK₁(G), SK₂(G), Reciprocal Randic index, Reduced Reciprocal Randic index, and Root mean square index are defined and computed for nanocones $\text{CNC}_s[n]$ where n=1-5,10,12 and 20.

2. Materials and Method

A molecular graph is constructed by representing each atom of a molecule by a vertex and bonds between atoms by edges. The number of vertices of G adjacent to a given vertex v, is the degree of this vertex and will be denoted by d_v . The 2-dimensional graph of $CNC_s[1]$ is shown in figure (1).

Fig.1.2-dimensional graph of CNC₅[1].

The vertices of this graph have degree either 2 or 3. The pentagon is surrounded by 5 hexagons. The molecular graph of CNC $_{s}$ [1] has 25 edges.

^{if} u and v be vertices of any edge then there are 10 edges of degree du = dv=3,

5 edges of type du = dv = 2, 10 edges of type du = 3, dv = 2.

The SK(G), $SK_1(G)$, $SK_2(G)$ are defined in V.Shigehalli [21], Randic index, reciprocal Randic index, reduced reciprocal Randic index are defined in [4-12,16-20] and the root mean square index is defined in

[22]. The partitions of edges (2,2),(2,3) and (3,3) for nanocones for $CNC_s[n]$ where n=1-5,10,12 and 20 are taken from [4,15]. The multiplicative SK (G) index is computed for CNCk[n] from molecular graph of CNC5[1] figure (1). In the molecular graph of pentagonal carbon nanocones edges with endpoints having degrees 2, 2 (E₁) are 5. This may due to pentagon is a shape with five sides and five angles. The edges with endpoints 3, 3 (E₂) and 3, 2 (E₃) are counted on molecular graphs of carbon nanocones. The graphs for CNC5[2] and CNC5[4] are shown in figure (2). The number of edges with u = dv = 2 are 5 in nanocones CNC5[n] with n=1-5, 10, 12 and 20.

3. Results and discussion

In carbon nanocones CNCk[n] the parameter k defines the length of inner cycle and n defines the number of layers of the graph. The graphs for $CNC_s[2]$ and $CNC_s[4]$ are shown in figure (2).

Fig.2. Molecular graphs of CNC5[2] and CNC5[4] nanocones.

From 2-dimensional graphs of these carbon nanocones the edges of degree (3, 3), (2, 2) and (3, 2) are counted [4, 15] and represented in table number (1).

Table 1. The num	ther of edges $(d_u = 3, d_y = 3)$	=3 E ₁),	$(d_u = 2, d_v = 2)$	E ₂)
and $(d_u = 3, d_v = 2)$	E ₃) for nanocones CN	Ck[n] wl	here n= 1-5,1	0,12
and 20.				

Carbon Nanocones	The number of edges of type	The number of edges of type	The number of edges of type	
	$d_{u}=3, d_{v}=3$ (E ₁)	$d_{u}=2, d_{v}=2$ (E ₂)	$d_{\mu}=3, d_{\nu}=2$ (E ₃)	
CNC5[1]	10	5	10	
CNC ₅ [2]	35	5	20	
CNC ₅ [3]	75	5	30	
CNC ₅ [4]	130	5	40	
CNC ₅ [5]	200	5	50	
CNC ₅ [10]	775	5	100	
CNC ₅ [12]	1110	5	120	
CNC ₅ [20]	3050	5	200	

The graph of pentagonal carbon nanocone (fig.1)

CNC5[1] has 25 edges.

If u and v are vertices of any edge then, there are 10 edges of degree $d_u = d_v = 3$ (E₁),

5 edges of type $d_u = d_v = 2$ (E2), 10 edges of type $d_u = 3, d_v = 2$ (E₃).

The SK index of a graph G = (u, v) is defined as [21], SK (G) =

$$\sum u, v \in E(G)$$
) $\sum_{u,v \in E(G)} \frac{d_u + d_v}{2}$

The multiplicative PSK (G) is defined as,

$$\mathsf{PSK}(G) = \prod_{u, v \in E(G)} \frac{d_{u} + d_{v}}{2}$$

multiplicative SK1 (G) index.

PSK 1(G) = $\prod_{u,v \in E(G)} \frac{d_{u \times d_v}}{c}$

multiplicative SK2 (G) index,

$$PSK_2(G) = \prod_{u,v \in E(G)} \left(\frac{a_u + a_v}{2}\right)^2$$

multiplicative reciprocal Randic index.

PRRI (G) =
$$\prod_{u,v \in E(G)} \sqrt{d_u d_v}$$

multiplicative reduced reciprocal Randic index,

Р

PRRRI (G) =
$$\prod_{u,v \in E(G)} \sqrt{(d_u - 1)(d_v - 1)}$$

multiplicative root mean square index.

RMSI (G) =
$$\prod_{u,v \in E(G)} \sqrt{(d_u^2 + d_v^2)/2}$$

Almost every topological index can be expressed in the multiplicative version. The multiplicative SK (G) for CNC₅[1] computed from figure (1) as,

$$PSK(G) = \prod_{u,v \in E(G)} \frac{d_u + d_v}{2}$$
$$\prod_{u,v \in E_1(G)} \frac{d_u + d_v}{2} \times \prod_{u,v \in E_2(G)} \frac{d_u + d_v}{2} \times \prod_{u,v \in E_3(G)} \frac{d_u + d_v}{2}$$
$$= \left(\frac{d_u + d_v}{2}\right) E_1 \quad \times \quad \left(\frac{d_u + d_v}{2}\right) E_2 \quad \times \quad \left(\frac{d_u + d_v}{2}\right) E_3$$

$$= \left(\frac{3+3}{2}\right) 10 \quad \left(-\frac{2+2}{2}\right) 5 \quad \left(\frac{3+2}{2}\right) 10$$
$$= 7500$$

These definitions of degree-based topological indices [4-12, 16-22] are used for computing the TI's of CNCk[n] where n=1-5, 10, 12 and 20 and the values of TI's tabled in table 2.

The TI's follows the order PRRRI (G) < PRMSI (G) < PRRI (G) < PSK $(G) \leq PSK_1(G) \leq PSK_2(G)$ for $CNC_5[1]$.

and the order PRRRI(G) < PRMSI(G) < PRRI(G) < PSK(G) < PSK1(G) <PSK2(G) in CNC5[20].

Table 2. The multiplicative topological indices of CNCk[n]where n=1-5, 10, 12 and 20 carbon nanocones. Topologico DSV(C DSV (C) DSV (C) DDDI(C) DDDDI DDMSI

Topologica	L 2V/G	r sr ₁ (G)	r SK ₂ (G)	F KKI(G)	ГЛЛЛ	L VISI
l indices)				(G)	(G)
Carbon						
Nanocones						
CNC ₅ [1]	7500	13500	112500	7348.45	1414.2	3354
CNC ₅ [2]	52500	94500	787500	51439.15	9899.4	23478
CNC ₅ [3]	168750	303750	2531250	165340.12	31819.5	75465
				5		
CNC ₅ [4]	390000	702000	5850000	382119.4	73538.4	174408
CNC ₅ [5]	750000	1350000	1125000	734845	141420	335400
CNC ₅ [10]	5812a5	1046250	8718750	5695048.7	109600	259935
	00	0	0	5	5	0
CNC ₅ [12]	999000	1798200	1498500	9788135.4	188371	446752
	0	0	00		4.4	8
CNC ₅ [20]	457500	8235000	6862500	44825545	862662	204594
	00	0	00		0	00

4. Conclusion

The multiplicative version of SK(G),SK1(G),SK2(G), Reciprocal Randic index, Reduced Reciprocal Randic index and Root mean square index are defined and computed for molecular graphs of CNC5[n] where n=1-5,10,12 and 20 nanocones. The values of multiplicative version of SK(G),SK1(G),SK2(G), Reciprocal Randic index, Reduced Reciprocal Randic index, and Root mean square index increase with n as the layer of hexagons increase with n surrounding the pentagon core in nanocones CNCk[n]. The PSK2(G) has highest values for CNC5[1] and CNC5[20] among the CNCk[n] studied.

Volume-8 | Issue-3 | March-2018 | PRINT ISSN No 2249-555X

REFERENCES

- S.Iijima, M.Yudusaka, R.Yamada et al, Nanoagreegates of single-walled graphic carbon [1] nano-horns,Chem.Phys.Lett.1999,309(3-4):165-170. Krishnan, Ebbesen et al, Nature ,388,(2001)241.
- T.Doslic, The hyper-Wiener index of one-pentagonal carbon nanocone, Current Nanoscience, 2013, 9, 557-560.
- Nanoscience, 2013; 93:57-200.
 O.K.Kurucu, E.Asian, Atom bond connectivity index of Carbon nanocones and An Algorithm, Applied Mathematics and Physics, 2015, Vol.3, No.1, 6-9.
 M.R.Farahani, M.K.Jamil,M.R.Rajesh Kanna, R.Pradeep Kumar, The multiplicative [4]
- [5] Zagreb Eccentricity index of Polycyclic Aromatic Hydrocarbon(PAHk), International Journal of Scientific and Engineering Research, Vol.7, Issue 2, February 2016.
- Journal of Scientific and Engineering Research, Vol. 7, Issue 2, February 2016.
 W.Gao, M.F.Farahani, M.R.R.Kanna, The multiplicative Zagreb indices of Nanostructures and Chains, Open Journal of Discrete Mathematics, 2016, 82-88.
 N.K.Raut, The Zagreb group indices and polynomials, International Journal of Modern Engineering Research, Vol.6, Issue 10, October-2016, 84-87.
 M.Bhanumathi, K. Easu Julia-Rani, On multiplicative Harmonic Index, Multiplicative environments, Activity and Chains, Computer Control 10, 651-651. [6]
- [7]
- [8] ISI index and Multiplicative F index of TUC4C8[m, n] and TUC4[m, n] nanotubes, International Journal on Recent Trends in Life Sciences and Mathematics ,Vol.4,Issue 9,Sept 2017, pp.01-08.
- V.R.Kulli, A new multiplicative Arithmetic-Geometric index, International Journal of Fuzzy Mathematical Archive, Vol.12, No.2, 2017, 49-53.
 V.R.Kulli, Multiplicative connectivity indices of TUC4C8[m, n] and TUC4[m, n]
- nanotubes, Journal of Computer and Mathematical Sciences, Vol.7(11),599-605,November-2016.. [11] N.K.Raut, G.K.Sanap, V.P.Sangle, On the Topological indices of nanocones, Recent
- I.Gutman, S.A.Shangy, T.Bangy, on the topological indices of handbornes, recent advances in Mathematics, National Conference, 21-23 January-2016.
 I.Gutman, Degree-based topological indices, Croat. Chem. Acta 86(4) (2013) 351-361.
 R.Diestel, Graph theory, Electronic edition, Springer-Verlog, New York, 1997-2000.
- D.B.West, Introduction to graph theory, second edition, PHI, Learning Private Ltd. New [14] Delhi, 2009, 67-80.
- DEnn; Joww.google.co.in./search?q=carbon+nanocones.
 A.Ali,A.A.Bhatti and Z.Raza,Further inequalities between vertex degree-based, topological indices, arXiv,1401-7511v1(math CO.)29 Jan 2014.
 M.J.Nikmeher, N.Soleimani and M.Veylaki, Proceeding of IAM V.3, N.1, 2014, pp.89-
- J.Gutman and J.Tosovic, Testing the quality of molecular structure descriptors, vertex-degree based topological indices J.Serb.Chem.Soc.78(6)805-810(2013).
 T.Doslic, Vertex-weighted, Wiener polynomials for composite graphs, ASR Mathematica Contemporanea 1(2008)66-80.
- M.R.Farahani, International Journal of Engineering and Technology Research Vol.3, No 1, Feb-2015,pp.01-06.
 V.Shigehalli, R.Kanabur, Computing degree-based topological indices of Polyhex
- nanotubes, Journal of Mathematical Nanosciences 6(1-2)2016, 47-55. A.Anuradha, V.Kaladevi, A.Abinayaa, International Journal in Physical and Applied [22] Sciences, Vol.4, issue8, August-2017, pp. 17-25

49