COMPARATIVE ASSESSMENT OF ZINC SULPHATE AND ESSENTIALE FORTE® IN MANAGING BIOCHEMICAL ALTERATIONS OF CARBON TETRACHLORIDE–INDUCED HEPATOTOXICITY ON ADULT WISTAR RATS.

Arayombo, Babatunde E
Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria. *Corresponding Author

Adeyole, Olarinde. S.
Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.

Adelodun Taiwo. S.
Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.

Saka Olusola. S.
Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.

Ojo Surajudeen
Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Nigeria.

ABSTRACT
The main objective of this study was to assess and compare the effect of Zinc Sulphate and Essential Forte® on the biochemistry of carbon tetrachloride (CCL₄) induced hepatotoxicity in adult Wistar rats.

MATERIALS AND METHODS
Twenty five adult Wistar rats, weighing between 150 g and 170 g, were used for the study. They were housed in plastic cages fed on standard laboratory rat pellets and given water ad libitum. The animals were divided into five groups: A, B, C, D and E (n=5). Group (A) received 0.7 ml/kg of olive oil orally. Groups B, C, D and E were administered CCL₄ (0.7 ml/kg orally) for 1 week in 1:1 dilution with Olive Oil. After CCL₄ administration Group C was treated with Essential Forte® (4.5 mg/kg bw orally) for four weeks. Group D was treated with Zinc Sulphate (7mg/kg bw orally) daily for four weeks. Group E received Zinc Sulphate (7 mg/kg bw orally) and Essential Forte® (4.5 mg/kg bw orally) for a period of 4 weeks, while group B was left untreated. Animals were left for another one week and afterwards sacrificed under ether anaesthesia. Blood samples were obtained via cardiac puncture and centrifuged to obtain serum. Markers of liver function such as, Aspartate Amino Transferase (AST), Alanine Amino Transferase (ALT) as well as Alkaline Phosphatase (ALP) were estimated in the serum using enzyme colorimeter assay kit (Randox). Data obtained were analyzed by one way ANOVA, then Student Newman-Keuls (SNK) test for multiple comparisons. The result of Treatment with Zn and or Essential Forte® restored the hepatic function as the biochemical analysis with Mean±SEM showed significant reduction in the levels of markers of liver function and protected the liver tissue from fatty and degenerative changes. In conclusion, this study showed that combination of Essential Forte® and Zinc supplement offered better ameliorative effect on the markers of liver function of Wistar rats following CCL₄ induced - hepatotoxicity compared with separate administration of either Essential Forte® or Zinc supplement.

KEYWORDS : Wistar rats, Carbon tetrachloride, Zinc Sulphate, Essential Forte, Liver.

INTRODUCTION
Most routine tests reflect liver damage the tests of function are those which reflect synthetic capacity for instance albumin and prothrombin time, liver function tests may be grossly deranged when function is normal and may be normal when function is grossly deranged for it has enormous functional reserves, such that early liver impairment is clinically masked and the progression of the deranged liver function makes the condition life threatening (Cotran et al., 1999). Morphologically, liver responds to injurious events in 5 different ways, irrespective of the cause viz; Degeneration and intracellular accumulation, Necrosis and Apoptosis, Inflammation, Regeneration, Fibrosis (Cotran et al., 1999).

CCL₄, is a colourless liquid, ether-like in odour with a density of 1.6 gcm⁻³ melting point is 22.9°C, boiling point is 76.7°C and soluble in water at 0.08 g/100ml (25°C). It is also soluble in alcohol, ether, chloroform, benzene, naphtha and carbon sulphide. The vapour pressure is 11.94kPa at 20°C and refractive index of 1.5. it has crystal structure with tetrahedral shape. It is not flammable, its auto-ignition temp is 982°C and LD₅₀ is 2350 mg/kg. International programme on chemical safety (IPCS) (1999). It has been reported to produce free radical with tetrahedral shape. It is not flammable, its auto-ignition tempt is 98°C and LD₅₀ is 2350 mg/kg. International programme on chemical safety (IPCS) (1999). It has been reported to produce free radical with tetrahedral shape.

Zinc is known as an essential trace element necessary for protein metabolism, as well as membrane integrity and also involved in the structure and function of numerous metalloenzymes. It has important functions in skin and connective tissue, metabolism as well as in wound healing. (Berger, 2002). It exerts its antioxidant effects indirectly by maintaining membrane structures, involving in the structure of SOD, increasing the metallothionein concentrations and, competing with redox reactive metals, iron and cuprous for critical binding sites (Yardic et al., 1989). It is shown that hepatic and serum zinc levels of patients in liver disease decreased depending on the degree of liver damage (Zhou 2010).

MATERIALS AND METHODS
Animal Care and Management: Twenty five adult Wistar rats, weighing between 150 g and 170 g (6–10 weeks old) obtained from Animal Holding of International Institute of Tropical Agriculture Ibadan Oyo State were used for the...
research. The animals were housed in plastic cages in a clean environment of 12 hours day/night cycle, at room temperature, in the animal holding of the Department of Anatomy and Cell Biology. They were fed on standard laboratory rat pellets and have free access to water. Ethical clearance for the study was obtained from Health Research Ethical Committee (HREC), Institute of Public Health (IPH) Obafemi Awolowo University (OAU) Ile-Ife. The animals were given humane care according to the guidelines of HREC, IPH/OAU.

Preparation of the Chemicals/Drugs

2.5 litres of CCl₄ was obtained from the central research laboratory of Obafemi Awolowo University, Olive Oil, Zinc Sulphate (ZnSO₄) tablets and Essentiale Forte® capsules were of the best grade commercially available. 60ml of CCl₄ was diluted with 60ml of olive Oil in 1:1 equivalent, and this was administered at a dose of 0.7ml/kg p.o. 3 tablets of ZnSO₄ was dissolved in 60ml of distilled water and this was administered at a dose of 7ml/kg, Essentiale Forte® capsule was prepared by dissolving a capsule in 60 ml of distilled water, and was administered at a dose of 4.5mg/kg all being freshly prepared on each day of administration.

Animal Treatment

The rats were divided into five groups A, B, C, D and E of five rats each (n=5). Group (A) normal control, received oral administration of olive oil only. Group B negative control received daily administration of CCl₄ (0.7 ml/kg p.o.) for 1 week in 1:1 dilution with olive oil without treatment. Groups C test group I received Essentiale Forte® 4.5 mg/kg/day for four weeks after the administration of CCl₄, Group D test group II received Zinc Sulphate® (7mg/kg/day p.o) daily for four weeks after the administration of CCl₄, Group E test group III received Zinc Sulphate® 7mg/kg/day for four weeks and Essentiale Forte® 4.5mg/kg/day p.o. for a period of 4 weeks concurrently, after CCl₄ administration. All administrations were via oral route for four weeks (Essentiale Forte® and Zinc Sulphate®) while CCl₄, was for one week.

Animal Sacrifice and Sample Collection

At the end of the experimental procedure the animals were sacrificed after one week of recovery period. Animals were euthanized by ether anaesthesia a midline incision was made along the anterior abdominal wall. The blood was taken by cardiac puncture, the abdomen of the sacrificed animal were cut open quickly and the liver perfused with isotonic saline, excised, blotted dry, weighed, and divided into samples.

The degree of hepatic necrosis and fibrosis were determined by a semi-quantitative method (Pilette et al., 1998). Some portions of the liver tissues were homogenized for biochemical assay (ALT, AST, ALP) and the rest fixed in 10% formal saline for subsequent routine histological procedures.

Serum and homogenate Alanine, Aspartate Aminotransferases and Alkaline Phosphatase (ALT, AST and ALP)Whole blood was centrifuged at 4700 rpm for 10 min at 4°C and ALT, AST and ALP were determined spectrophotometrically with an automatic analyzer (Cobas Mira, Roche, Switzerland) using commercially available kits (Randox Diagnostics). Their activities were expressed as an international unit (IU/L).

Statistical Analysis

One way ANOVA was used to analyze the data, followed by Student Newman-Keuls (SNK) test for multiple comparisons. Graph Pad Prism 5 (Version 5.03 Graph Pad Inc.) was the statistical package used for data analysis. Significant difference was set at p<0.05.

RESULTS

Hepatic Enzyme Levels In the Control and Test Groups.

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>AST (IU/L)</th>
<th>ALP (IU/L)</th>
<th>ALT (IU/L)</th>
<th>PCV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(Olive Oil)</td>
<td>67.80±3.50</td>
<td>100.4±7.86</td>
<td>17.60±1.94</td>
<td>41.00±2.00</td>
</tr>
<tr>
<td>B (CCl₄)</td>
<td>100.20±4.42</td>
<td>322.2±29.12</td>
<td>49.80±5.41</td>
<td>32.00±1.00</td>
</tr>
<tr>
<td>C (CCl₄+EPL)</td>
<td>65.60±3.08</td>
<td>72.60±4.86</td>
<td>9.00±0.71</td>
<td>42.00±1.50</td>
</tr>
<tr>
<td>D (CCl₄+ZnSO₄)</td>
<td>69.00±4.55</td>
<td>130.6±18.49</td>
<td>20.60±1.50</td>
<td>40.00±2.00</td>
</tr>
<tr>
<td>E (CCl₄+ZnSO₄+EPL)</td>
<td>53.60±3.83</td>
<td>86.20±12.71</td>
<td>13.20±1.07</td>
<td>43.00±2.50</td>
</tr>
</tbody>
</table>

Results presented as mean ± SEM (n= 5)

α Significantly different from normal control at p < 0.05
β Significantly different from toxic control at p<0.05
γ Significantly different from C,D and E at p<0.05

EPL - Essentiale forte®
CCl₄ - Carbon tetrachloride.
ZnSO₄ - Zinc Sulphate.
DISCUSSION
Serum hepatobiliary enzymes, are present in high concentrations in the liver in stressful conditions. When there is hepatocyte necrosis or membrane damage, these enzymes are released into the circulation, as indicated by elevated serum enzyme levels. Zn was not able to decrease the levels of AST, ALT and ALP as compared to the standard drug essentiale forte but when combined, the enzyme levels were markedly reduced.

Significant reduction in the levels of these enzymes in the double treated groups indicated that Zn in combination with Essentiale forte was able to offer better protection to the liver against CCl4 induced hepatotoxicity.

Zn treatment was able to ameliorate CCl4-induced hepatocellular damage as evidenced by reversal of increased serum transaminase (AST and ALT) levels subsequent to exposure. The enzyme levels in group B was found to be markedly elevated to almost three folds however, this enzyme level was quickly reversed to normal after treatments. Moreover, the findings of this research was contrary to the result of the work by Alumot et al., (1976) which reported no significant effects on serum enzyme levels or hepatic fat content of rats exposed to doses of CCl4.

CCl4 toxicity was also found to have led to relative reduction in the haematocrit in group B unlike the other groups which is in keeping with the work done by Guild et al., (1958) and Stewart et al., (1991) which found that focal hemorrhagic lesions in the gastrointestinal tract and mild anemia were observed in humans who have ingested Carbon tetrachloride but this is likely due to decreased hepatic synthesis and or secretion of clotting factors. However it is contrary to the finds of Hayes et al., (1986), Oral exposure of mice to carbon tetrachloride did not result in any consistently significant hematological change.

Moreover, the work done by Bruckner et al., (2002) stated that; severity of hepatic lesions as evidenced by centrilobular fatty vacuolization sometimes with single cell necrosis was correlated with the level of increase in serum enzyme levels.

CONCLUSION
Combined administration of Zn and Essentiale forte may be considered as more potentially and synergistically therapeutic through derepression of enzyme leakage mechanism and thereby inhibiting liver toxicity induced by CCl4. Zn and or Essentiale forte’s hepatoprotective activity against carbon tetrachloride-induced liver damage, this activity could be due to the presence of flavinoids in EPL and membrane stabilization ability in both, thereby preventing cellular leakage. However, further studies are needed to expound the possible prophyliclastic and or protective effect of the zinc sulphate and essential forte’s combination in managing chronic liver disease clinically.

RECOMMENDATION
Further studies are recommended to give details about the histomorphometric correlation of hepatocytes and kupffer cells in liver of rats treated with CCl4, via a vis hepatic damage, possible relationship between the zinc level and the degree of liver damage via Zinc bioassay and possible prophyliclastic effect of the Zinc Sulphate and Essential forte’s combination in managing chemical-induced injury in liver disease.