A STUDY ON ENERGY OF HELM, CLOSED HELM, FLOWER AND BISTAR GRAPH USING MATLAB PROGRAM

R. Arundhadhi

B. Megala*

ABSTRACT
The energy $E(G)$, of a simple graph G is the sum of the absolute values of the eigenvalues of its adjaceny matrix $A(G)$. In this paper we have discussed the energy of Helm, Closed helm, Flower and Bistar graph for any values of n using MATLAB program.

Assistant Professor, Dept of Mathematics, D.G.Vaisnav College, Chennai, Tamil Nadu, India.

Research Scholar, Dept of Mathematics, D.G.Vaisnav College, Chennai, Tamil Nadu, India. *Corresponding Author

KEYWORDS : Energy of graph, Helm graph, Flower graph, Bistar graph.

1.INTRODUCTION

Here all graphs under consideration are simple, finite and undirected. For notations and terminology see [2].

The energy of a graph was defined by Gutman [3] in 1978 in his paper " The energy of a graph". Balakrishnan [1] derived an upper bound for the energy of k-regular graph as $E(G) \leq k+k(n-1)(n-k)$ and this bound is sharp. He also shown that for any positive integer $n \geq 3$, there exist two equienergetic graphs of order 4 n that are not cospectral. Kinkar Ch.Das et al [5] obtained some new upper bounds for energy of G in terms of number of vertices, number of edges, clique number, minimum degree and the first Zagreb index. A.Yu et al [7] presented two new upper bounds for energy of G in terms of number of vertices, edges, the degrees and 2-degrees of vertices. They also characterized the graphs for which the bounds are sharper. G.B.Sophia Shalini et al [6] done a detailed study on the bounds of energy of simple, connected and directed graphs of order less than 10. In this paper, some new families of hyper energetic graphs were identified and the relation between the energy of wheel and fan graph were also obtained. They observed that star graph possess the least energy among all the families of graphs under consideration. They also found the energy of certain families of graph with use of MATLAB program. Ivan Gutman [4], defined the laplacian energy of the graph as $L E(G)=\sum_{t=1}^{n}\left|\mu-\frac{2 m}{n}\right|$ and there is a analogy between the properties of $E(G)$ and $L E(G)$.

The energy $E(G)$ of a graph G is the sum of absolute values of the eigenvalues of its adjacency matrix $\mathrm{A}(\mathrm{G})$. That is,

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| \mid
$$

Where $\lambda_{1}, \lambda_{2}, \ldots . \lambda_{\mathrm{n}}$ are the eigenvalues for the adjacency matrix of the graph.

The Helm graph H_{n} is the graph obtained from an n-wheel graph by adjoining a pendant edge at each vertex of the cycle. The closed helm CH_{n} is the graph obtained from helm H_{n} by joining each pendant vertex to form a cycle.

The flower graph Fl_{n} is the graph obtained from a helm H_{n} by joining each pendant vertex to the apex of the helm.

Bistar graph $B_{m, n}$ is the graph obtained from K_{2} by joining m pendant edges to one end and n pendant edges to the other end of K_{2}

2.Energy of Helm graph \mathbf{H}_{n}

The energy of helm graph H_{n} for any values of n have been discussed in this section

[^0]$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1$;
$\mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;
end
for $\mathrm{i}=1$: n
$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{n})=1$;
$\mathrm{A}(\mathrm{i}+\mathrm{n}, \mathrm{i})=1$;
$\mathrm{A}(\mathrm{i}, \mathrm{m})=1$;
$\mathrm{A}(\mathrm{m}, \mathrm{i})=1$;
end
$\mathrm{A}(1, \mathrm{n})=1$;
$A(n, 1)=1$;
A
$\mathrm{K}=\operatorname{eig}(\mathrm{A})$;
$\mathrm{E}=\operatorname{sum}(\operatorname{abs}(\mathrm{k}))$
The energy of helm graph H_{5} is obtained in the following example using above MATLAB program.

Example

\% 'A' is the adjacency matrix of a graph
$\%$ ' K ' is the eigenvalue of the matrix
$\%$ ' E ' is the energy of the graph
$\mathrm{m}=$ input (' Enter the number of vertices:');
Enter the number of vertices:
11
$\mathrm{A}=\mathrm{Zeros}(11)$;
for $\mathrm{i}=1: 5-1$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1$;
$\mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;
end
for $\mathrm{i}=1: 5$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+5)=1$;
$A(i+5, i)=1$;
$\mathrm{A}(\mathrm{i}, 11)=1$;
$\mathrm{A}(11, \mathrm{i})=1$;
end
$\mathrm{A}(1,5)=1$;
$\mathrm{A}(5,1)=1$;
A
$\mathrm{A}=01001100001$
10100010001
01010001001
00101000101
10010000011
10000000000
01000000000
00100000000
00010000000
00001000000
11111000000
$\mathrm{K}=\operatorname{eig}(\mathrm{A})$;
$\mathrm{E}=\operatorname{sum}(\mathrm{abs}(\mathrm{K}))$
$\mathrm{E}=14.6232$

3. ENERGY OF CLOSED HELM GRAPH CH

This section deals with the energy of closed helm graph CH_{n} for any values of n using MATLAB program.

3.1 MATLAB program to generate the energy of general closed	\% ' E ' is the energy of the graph
helm graph CH_{n}	$\mathrm{m}=$ input('Enter the number of vertices:');
\% ' A ' is the adjacency matrix of the graph	$\mathrm{A}=$ zeros(m);
\% ' K ' is the eigenvalue of the matrix	for $\mathrm{i}=1: \mathrm{n}-1$
$\%$ ' E ' is the energy of the graph	$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1$;
$\mathrm{m}=$ input ('Enter the number of vertices:');	$\mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;
$\mathrm{A}=\mathrm{zeros}(\mathrm{m})$;	end
for $\mathrm{i}=1: \mathrm{n}-1$	for $\mathrm{i}=1: \mathrm{n}$
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1$;	$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{n})=1$;
$\mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;	$\mathrm{A}(\mathrm{i}+\mathrm{n}, \mathrm{i})=1$;
end	$\mathrm{A}(\mathrm{i}, \mathrm{m})=1$;
for $\mathrm{i}=1$: n	$\mathrm{A}(\mathrm{m}, \mathrm{i})=1$;
$\mathrm{A}(\mathrm{i}, \mathrm{i}+\mathrm{n})=1$;	$\mathrm{A}(\mathrm{i}+\mathrm{n}, \mathrm{m})=1 ;$
$\mathrm{A}(\mathrm{i}+\mathrm{n}, \mathrm{i})=1$;	$\mathrm{A}(\mathrm{m}, \mathrm{i}+\mathrm{n})=1$;
$\mathrm{A}(\mathrm{i}, \mathrm{m})=1$;	end
$\mathrm{A}(\mathrm{m}, \mathrm{i})=1$;	$\mathrm{A}(1, \mathrm{n})=1$;
end	$\mathrm{A}(\mathrm{n}, 1)=1$;
for $\mathrm{i}=\mathrm{n}+1: 2 \mathrm{n}-1$	A
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1$;	$\mathrm{K}=\mathrm{eig}(\mathrm{A})$;
$\mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$ end	$\mathrm{E}=\operatorname{sum}(\mathrm{abs}(\mathrm{k})$)
$\mathrm{A}(1, \mathrm{n})=1$;	In the following example, we have obtained the energy of flower graph
$\mathrm{A}(\mathrm{n}, 1)=1$;	Fl_{3}, by using the above MATLAB program.
$\mathrm{A}(\mathrm{n}+1,2 \mathrm{n})=1$;	
$\mathrm{A}(2 \mathrm{n}, \mathrm{n}+1)=1$;	Example
A	\% 'A' is the adjacency matrix of a graph
$\mathrm{K}=\mathrm{eig}(\mathrm{A})$;	\% ' K ' is the eigenvalue of the matrix
$\mathrm{E}=\operatorname{sum}(\mathrm{abs}(\mathrm{K})$)	\% 'E' is the energy of the graph
The following example gives the energy of Closed Helm graph CH_{4} using the above MATLAB program.	$\mathrm{m}=\mathrm{input}$ ('Enter the number of vertices:'); Enter the number of vertices: 7
	$\mathrm{A}=\mathrm{Z} \operatorname{eros}(7)$;
Example	for $\mathrm{i}=1: 3-1$
\% ' A ' is the adjacency matrix of the graph	$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1$;
\% ' K ' is the eigenvalue of the matrix	$\mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;
\% ' E ' is the energy of the graph	end
$\mathrm{m}=$ input('Enter the number of vertices:');	for $\mathrm{i}=1: 3$
Enter the number of vertices:	$\mathrm{A}(\mathrm{i}, \mathrm{i}+3)=1$;
9	$\mathrm{A}(\mathrm{i}+3, \mathrm{i})=1$;
$\mathrm{A}=\mathrm{zeros}(9)$;	$\mathrm{A}(\mathrm{i}, 7)=1$;
for $\mathrm{i}=1: 4-1$	$\mathrm{A}(7, \mathrm{i})=1$;
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1$;	$\mathrm{A}(\mathrm{i}+3,7)=1$;
$\mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;	$\mathrm{A}(7, \mathrm{i}+3)=1$;
end	end
for $1=1: 4$ $A(i, i+4)=1 ;$	$\mathrm{A}(1,3)=1$;
A $(1,1+4)=1$, $A(i+4, i)=1 ;$	A $(3,1)=1 ;$ A
$\mathrm{A}(\mathrm{i}, 9)=1$;	$\mathrm{A}=0111001$
$\mathrm{A}(9, \mathrm{i})=1$;	1010101
end	1100011
for $i=4+1:(2 * 4)-1$	1000001
$\mathrm{A}(\mathrm{i}, \mathrm{i}+1)=1$;	0100001
$\mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;	0010001
	1111110
A $(1,4)=1 ;$ $A(4,1)=1 ;$	$\mathrm{K}=\mathrm{eig}(\mathrm{A})$;
$A(4,1)=1 ;$ $A(4+1,2 * 4)=1 ;$	$\mathrm{E}=$ sum(abs(K))
A $(2 * 4,4+1)=1 ;$	$\mathrm{E}=10.1290$
A	5. Energy of Bistar graph $B_{m, n}$
	The energy of bistar graph $B_{m, n}$ for any values of n have been obtained
$\begin{array}{lllllllll} 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{array}$	in this section.
$\begin{array}{lllllllll}1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$	
1100000010010	5.1 MATLAB program to generate the energy of general bistar $\operatorname{graph} B_{m, n}$
$\begin{array}{llllllllll}0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0\end{array}$	$\%$ ' A ' is the adjacency matrix of the graph
$\begin{array}{lllllllllll}0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0\end{array}$	$\%$ ' K ' is the eigenvalue of the matrix
	$\%$ ' E ' is the energy of the graph
11111000000 $\mathrm{~K}=\operatorname{eig}(\mathrm{A}) ;$	$\mathrm{P}=$ input('Enter the number of vertices:');
$\begin{aligned} & \mathrm{K}=\operatorname{eig}(\mathrm{A}) ; \\ & \mathrm{E}=\operatorname{sum}(\mathrm{abs}(\mathrm{~K})) \end{aligned}$	$\mathrm{A}=\mathrm{zeros}(\mathrm{p})$;
$\mathrm{E}=17.5454$	$\begin{aligned} & \text { for } \mathrm{i}=1: \mathrm{m} \\ & \mathrm{~A}(1, \mathrm{i}+1)=1 ; \end{aligned}$
4. ENERGY OF FLOWER GRAPH FI ${ }_{\mathrm{n}}$	$\mathrm{A}(\mathrm{i}+1,1)=1$;
The energy of flower graph Fl_{n} for any values of n are discussed.	end $\text { for } \mathrm{i}=1: \mathrm{n}$
	$\mathrm{A}(\mathrm{p}, \mathrm{i}+(\mathrm{m}+1))=1$;
$\operatorname{graph} \mathbf{F l}_{\mathrm{n}}$	$\begin{aligned} & \mathrm{A}(\mathrm{i}+(\mathrm{m}+1), \mathrm{p})=1 \\ & \text { end } \end{aligned}$
\% ' A ' is the adjacency matrix of a graph $\%$ ' K ' is the eigenvalue of the matrix	$\mathrm{A}(1, \mathrm{p})=1$;

$\%$ ' A ' is the adjacency matrix of a graph
$\%$ ' K ' is the eigenvalue of the matrix
$\%$ ' E ' is the energy of the graph
$\mathrm{m}=\operatorname{input}($ 'Enter the number of vertices:');
$\mathrm{A}=\mathrm{zeros}(\mathrm{m})$;
for $1=1: n-1$
$A(i+1, i)=1$;
end
for $\mathrm{i}=1$: n
$A(\mathrm{i}+\mathrm{n}, \mathrm{i})=1$;
(i+n, 1 = $=1$;
$A(m, i)=1$.
$\mathrm{A}(\mathrm{i}+\mathrm{n}, \mathrm{m})=1$;
$\mathrm{A}(\mathrm{m}, \mathrm{i}+\mathrm{n})=1$;
end
$(1, \mathrm{n})=1$
$A(n, 1)=1$;
$\mathrm{K}=\operatorname{eig}(\mathrm{A})$;
$\mathrm{E}=\operatorname{sum}(\mathrm{abs}(\mathrm{k}))$
In the following example, we have obtained the energy of flower graph Fl_{3}, by using the above MATLAB program.

Example

$\%$ ' A ' is the adjacency matrix of a graph
' is the ergenvalue of the matrix
$\%$ ' E ' is the energy of the graph
m-input ('Enter the number of vertices:');
Enter the number of vertices:
A= $\mathrm{Ze} \operatorname{ros}(7)$;
$A(1, i+1)=$
$\mathrm{A}(\mathrm{i}+1, \mathrm{i})=1$;
end
A(i,i+3)=
$\mathrm{A}(\mathrm{i}+3, \mathrm{i})=1$;
$\mathrm{A}(\mathrm{i}, 7)=1$;
$\mathrm{A}(7, \mathrm{i})=1$;
($+3,7$) $=1$;
$A(7, i+3)=1$
$\mathrm{A}(1,3)=1$;
$\mathrm{A}(3,1)=1$;
A
101010
1100011
1000001
000001
-111
$\mathrm{K}=\operatorname{eig}(\mathrm{A})$;
$\mathrm{E}=\operatorname{sum}(\mathrm{abs}(\mathrm{K}))$

5. Energy of Bistar graph $B_{m, n}$

The energy of bistar graph $B_{m, n}$ for any values of n have been obtained in this section.
5.1 MATLAB program to generate the energy of general bistar graph B $_{\mathrm{m}, \mathrm{n}}$
graph
is the eigenvalue of the matrix
$\%$ ' E ' is the energy of the graph
P-input('Enter the number of vertices:');
$\mathrm{A}=\mathrm{zeros}(\mathrm{p})$;
ri=1:m
$\mathrm{A}(\mathrm{i}+1,1)=1$
end
$\mathrm{A}(\mathrm{p}, \mathrm{i}+(\mathrm{m}+1))=1$;
end
$\mathrm{A}(1, \mathrm{p})=1$;

```
\(\mathrm{A}(\mathrm{p}, 1)=1\);
A
\(\mathrm{K}=\mathrm{eig}(\mathrm{A})\);
E=sum(abs(K))
By using the above MATLAB program the energy of bistar graph \(B_{3,4}\) is
obtained in the following example.
```

Example
\% ' A ' is the adjacency matrix of the graph
\% ' K ' is the eigenvalue of the matrix
\% ' E ' is the energy of the graph
$\mathrm{P}=$ input('Enter the number of vertices:');
Enter the number of vertices:
9
$\mathrm{A}=$ zeros(9);
for $\mathrm{i}=1: 3$
A $(1, i+1)=1$;
$\mathrm{A}(\mathrm{i}+1,1)=1$;
end
for $\mathrm{i}=1: 4$
$\mathrm{A}(9, \mathrm{i}+(3+1))=1$;
$\mathrm{A}(\mathrm{i}+(3+1), 9)=1$;
end
$\mathrm{A}(1,9)=1$;
$\mathrm{A}(9,1)=1$;
A
A=0 1011000001
100000000
100000000
100000000
$\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 01$
000000001
000000001
000000001
100011110
$\mathrm{K}=\operatorname{eig}(\mathrm{A})$;
$\mathrm{E}=\mathrm{sum}(\mathrm{abs}(\mathrm{K}))$
$\mathrm{E}=7.7274$

CONCLUSION

In this paper ,the following results are obtained by using MATLAB program.

1. Energy of Helm graph H_{n}
2. Energy of Closed helm graph CH_{n}
3. Energy of Flower graph Fl_{n}
4. Energy of Bistar graph $B_{m, n}$

REFERENCES

1) Balakrishnan R, (2004), The energy of a graph, Linear Algebra APPL.,387, 287-295.

Douglas B.West, (2003),Introduction to Graph Theory, Second Edition
3) Ivan Gutman, (1978), The energy of a graph, 10. Steiermarkisches Mathematises Symposium(Stift rain, Graz, 1978), 103, 1-22.
Ivan Gutam \& B.Zhou, (2006),Laplacian Energy of a graph, Lin.Algebra Appl., 414, 29Ivan
5) Kinkar Ch.Das, \& Mojallal S.A,(2013), Upper Bounds for the Energy of Graphs, Match commun Math. Comput. Chem., 70, 657-662.
6) Sophia Shalini G.B, \& Mayamma Joseph,(2017), New results on energy of Graphs of small order, Global Journal of pure and Applied Mathematics, 13, 2837-2848.
7) Yu A, Lu M, \& Tian F,(2005), New upper bound for the energy of graphs, MATCH. Commun. Math. Comput. Chem., 53,441-448.

[^0]: 2.1 MATLAB program to generate the energy of general Helm graph \mathbf{H}_{n}
 \% ' A ' is the adjacency matrix of a graph
 $\%$ ' K ' is the eigenvalue of the matrix
 $\%$ ' E ' is the energy of the graph
 $\mathrm{m}=$ input (' Enter the number of vertices:');
 $\mathrm{A}=\mathrm{Z} \operatorname{eros}(\mathrm{m})$;
 for $\mathrm{i}=1: \mathrm{n}-1$

