Microbiology

INFLUENCE OF D120-SOLUTION ON LIFE SPAN AND FERTILITY IN MICE

Victor Abramovich Zuev*	National Research Center of Epidemiology and Microbiology named after N.F. Gamaleya, the Ministry of Health of the Russian Federation, Moscow, Russia; *Correspondinnng Author
Sergey Evgenevich Postnov	Federal State Unitary Enterprise the Central Aerohydrodynamic Institute Named after Prof. N.E. Zhukovsky, Zhukovsky, Russia
Larisa Georgievna Vetkova	National Research Center of Epidemiology and Microbiology named after N.F. Gamaleya, the Ministry of Health of the Russian Federation, Moscow, Russia;
Galina Michailovna Shaposhnikova	National Research Center of Epidemiology and Microbiology named after N.F. Gamaleya, the Ministry of Health of the Russian Federation, Moscow, Russia;
Valentina Semionovna Zueva	National Research Center of Epidemiology and Microbiology named after N.F. Gamaleya, the Ministry of Health of the Russian Federation, Moscow, Russia;
Prolong	ad administration to mice of the medicinal product with the working title "D120" appreciably increase the average

ABSTRACT Prolonged administration to mice of the medicinal product with the working title "D120" appreciably increase the average and maximum lifespan of the mice either with different health status or having severe pathologies. Under some experimental conditions, fertility of the animals dramatically increased, which was manifested in a litter born by the animals in the 3rd and 4th year of their life.

KEYWORDS: life span, fertility, cumulative effect.

INTRODUCTION

The number of studies devoted to the fight against aging has markedly increased in recent years. Various research teams make their contribution to an increase in the life span of animals using different approaches to animal experiments. For example, by restricting calorie intake (Heilbornn & Ravussin, 2003), inhibiting cell signaling pathways with rapamycin (Wilkinson et al., 2012), using administration of nicotinamide (Cambronne et al., 2016) and other antioxidants (Shabalina et al., 2017), transplanting sex glands of young individuals into old ones (Goodman et al., 2016), with the help of pharmaceutical medications to "cleanse" the body from old cells (Baker et al., 2016), suppressing the work of the hypothalamus (Zhang et al., 2017), by transplanting the bone marrow of young laboratory mice into old mice (Das et al., 2019), or by using other techniques.

This report presents the findings of the research into the effects of the medicinal product "D120" on the life span of mammals. For this purpose, the authors used outwardly healthy mice of the same strain differing in the life span, as well as the animals suffering from severe lethal pathologies.

MATERIALS AND METHODS *Animals*.

Three groups of mice were used to perform the experiments: the first group contained outwardly healthy 6-month-old C57Black/6 mice with a life span of about 2 years, the second group contained outwardly healthy 3-month-old C57Black/6 mice ("weak"), with a life span of about 1 year and the third group consisted of short-lived mutant B/KSdb +/ + m mice, representing the genetic model of type 2 diabetes. The animals of the latter group are considered an appropriate model of type 2 diabetes, suitable for researching and evaluating new effective treatments for the disease in the experiment. This model reproduces characteristic features of the stages in the development of type 2 diabetes:insulin resistance of tissues develops at the early stages (1-2 months), which is compensated by islet cell hypertrophy; the stage of absolute insulin deficiency, as in type 1 diabetes, develops within the period of 3-4 months; the late stage of diabetes mellitus develops in the 5th-6th months, which leads to a profound disruption of metabolism, cachexia and death of animals.

Observation of mice throughout the entire experiment was carried out

32

INDIAN JOURNAL OF APPLIED RESEARCH

in the premises of the Department of Experimental Animals (License $N_{\rm D}$ 00075-LS, distributed 15.12.2014). It is a 1-storey brick building with the area of 538 m². The mice were kept in a room of 16.5 m² with a large window, equipped with a supply and exhaust ventilation system, electric illumination, central heating, hot and cold water. The mice were placed in plastic cages (5-10 individuals in each) of 25x40 cm (1000 cm²) and 20 cm high. The cages had a solid floor and were covered with a metal grid, on which food and water in special drinking containers were provided. Daily cage cleaning included removing the bedding (sawdust) and replacing food and water. The diet of the animals consisted of standard full-value feed in pellets and ordinary tap water.

Produkt D120 (Patent. Postnov, 2013). Only the mice from the experimental groups additionally received *per os* 0,25 μ l of D120 in the mornings according to different schemes. Committee on Biomedical Ethics of the National Research Center for Epidemiology and Microbiology named after Prof. N.F. Gamaleya confirms (Protocol No. 12, 2017) that research studies aimed to expand life span of mice were performed in compliance with the moral and ethical norms and recommendations for humane treatment of laboratory animals reflected in the European Convention for the Protection of Vertebrates used for Experimental and other Scientific Purposes adopted on March 18, 1986 in Strasbourg.

The statistical analysis was performed using the Kaplan-Meier multiplicative estimators (Kaplan & Meier, 1958), Gehan's generalized Wilcoxon test (Gehan, 1965) and the Cox-Mantel test F-criterion (Mantel, 1966) (*see Supplement:* "Cumulative proportion of mice surviving in the subgroups of the 1st group", "Cumulative proportion of diabetic mice surviving").

RESULTS

The animals from the first group - outwardly healthy 6-month-old C57Black / 6 mice - were divided into 3 subgroups of 10 animals in each. The animals of the 1st subgroup received *per os* 0,25 μ l of D120 daily for 2,5 months. The animals of the 2nd subgroup received D120 in the same way daily over the entire observation period. Ten mice served as the control. Each subgroup of animals included both males and females: there were 8 females and 2 males in the first subgroup, 8 females and 2 males in the scontrol group contained 7 females and 3 males.

Starting from the 513-th day of life of the animals, the onset of their death was first recorded in the control subgroup, and soon in the 1st experimental subgroup (Fig. 1).

Figure 1. Dynamics in the death rate of the mice from different subgroups and the birth of offspring at the advanced periods of life

Subsequently, the mortality rate of the mice from the 1st experimental subgroup somewhat slowed down, as compared to the mortality rate of the animals from the control subgroup. This ultimately affected the indicators for the average and maximum life span of the animals in this subgroup.

A specific nature of the mortality rate was observed in the animals from the 2nd subgroup, where the onset of death was recorded when the animals reached the age of over 3,7 years. The mortality curve for the mice from this subgroup was less "stretched" in comparison with that for the animals in the 1st experimental subgroup. The data on the survival rate of each individual in the control and both experimental subgroups made it possible to determine the average and maximum life span of the animals in these subgroups (Table 1).

As shown in Table. 1, the average and maximum life span of the animals receiving D120 just for 2.5 months turned out to be 28% and 44%, respectively, longer as compared to the control.

Table 1. Av	erage and max	timum life spa	an of mice in	each group
-------------	---------------	----------------	---------------	------------

	Number of days each of	Total	Life spa	in (days)
Group	10 mice have lived	number of days	Average	Maximum
Control	513, 549, 598,598, 698, 708,708, 751, 793,803	6719	671.9 100%	803 100%
1st subgroup	537, 642, 698, 793, 880, 880, 897, 1018, 1135, 1157	8637	863.7 +28%	1157 + 44%
2 nd subgroup	1376, 1376, 1382, 1517,1573, 1573, 1598, 1630, 1670, 1762	15457	1545.7 +130%	1762 +119%

At the same time, prolonged administration of D120 into the animals of the 2nd subgroup allowed the authors to increase their average life span more than twice (by 130%) and maximum life span by 119%. (See *Supplement* "Cumulative proportion of mice surviving in the subgroups of the 1st group").

At the beginning of the study, we did not aim to determine fertility of the animals. However, the animals from the 1st and 2nd subgroups gave birth to offspring at the advanced periods of life, when they reached almost 3 years of age, which made us focus particular attention on this fact. By the end of the observation period, when all the mice in the control group had already died, we were able to record that the animals from the 1st subgroup gave birth to a single litter, whereas the animals from the 2nd experimental subgroup produced the offspring 12 times (Fig. 1). The total number of mouse pups born by the animals from the 1st and 2nd experimental subgroups was equal to 7 and 96 individuals, correspondingly.

The group of so-called "weak" C57Black/6 mice with a shorter life span consisted of two subgroups - the control and experimental ones of 13 animals in each. Control animals received ordinary tap water and standard feed in pellets. Mice from the experimental group additionally received *per os* 0,25 μ l of the medicinal product D120 daily.

As anticipated, the onset of death in the control mice from the weakened group of animals was recorded already in the second or third months of their first year of life. Unlike previous observations, the control mice did not survive until the end of their first year of life (Fig. 2).

In the experimental subgroup, the mice started dying in the fifth month of life. It took place at prolonged time intervals. The obtained data allowed the authors to determine the average and maximum life span of the animals (Table 2)

Table 2. Average and maximum me span of weak min	e in eaci	a subgroup
--	-----------	------------

	Number of days each	Total	Life span (days)		
Group	of 13 mice have lived	number of days	Average	Maximum	
Control	57, 71, 100, 146, 195, 195, 195, 300, 311, 318, 325, 325, 328	2866	220,5 100%	328 100%	
1 st subgroup	129, 195, 195, 195, 311, 326, 344, 350, 370, 538, 538, 645, 658	4794	368,8 +67,3%	658 +100,6%	

D120, was placed in a cage with experimental animals at the end of the working day.

As anticipated, the onset of mortality in the mice from the control group (Fig. 3) started from the 4th month of their life and was rather sudden. As expected, all control mice died before they had reached 6 months of age.

The number of days lince have lived

At the same time, mortality of the mice that were receiving D120 was also characterized by a rather "steep" dynamics. However, the onset of their death started somewhat later. The process of a gradual death lasted much longer, as compared with the control. These differences are also expressed in the values of the average and maximum life span of the animals (Table 3).

Table 3. Average and maximum life span of "diabetic" mice in each subgroup

	Number of days each of	Total	Life span (days)		
Group	16 mice have lived	number of days	Average	Maximum	
Control	124, 125, 131, 135, 138, 140, 140, 140, 141, 143, 143, 145, 145, 161, 161, 163	2275	142,2 100%	163 100%	
l st subgroup	142, 143, 145, 145, 147, 149, 149, 150, 152, 152, 162, 185, 271, 282, 299, 319	2992	187,0 +31,5%	319 +95,7%	

So, owing to the administration of D120, the average and maximum life span of diabetic mice have increased by 31,5% and 95,7%, respectively, as compared to the control. (See *Supplement* "Cumulative proportion of diabetic mice surviving").

DISCUSSION

The obtained data make it possible to speculate about an obviously positive effect of D120 on the indicators for life span of the animals. This is clearly demonstrated by a significant increase in the average

and maximum life span in the animals of all three experimental groups. A comparative analysis of the survival curves of the healthy animals from the 1st group (Fig. 1) marks a certain similarity in the nature of the curves for the animals from the first and second experimental subgroups. However, analysis of the survival curves of the "weak" and diabetic mice treated with D120 exhibits some particular characteristic features: a distinctive "roughness", with the curve reaching the "plateau" of different lengths, is observed in both cases. It is likely to be caused by a positive cumulative effect of D120, which is realized as a result of its accumulation in the body over time. Also this effect could possibly be more pronounced in more severe pathologies. On the other hand, the reason for such cumulative effects of D120, as well.

And finally, completely unexpected fertility at the advanced periods of life in the mice from the first group treated with D120 should be recognized as a direct argument in favor of the positive effect of D120 on the changes in general life indicators of the mice. This result allows the authors to speculate about the ability of D120 to preserve, to a certain extent, the quality of life typical of the young organism even at the mature age.

The noteworthy feature is the qualitative similarity in the positive effects of D120 on the general life indicators of the mice from the first group despite different schemes of D120 administration. Although the quantitative indicators of these processes were different, the similarity mentioned above may be attributed to the fact that D120 was administered to already mature individuals both in the 1st and 2nd experimental subgroups. More pronounced changes in the 2nd experimental subgroup may be associated with a more prolonged administration of D120 itself. Accordingly, an increase in the average and maximum life span, as well as fertility of the animals, indicates a significant increase in the duration of the active phase of animal life under the influence of the medicinal product D120.

Taking into account a recently appeared statement that «lifespan and sexual maturity depends on your brain more than your body» (Vandwerbilt University, 2018; Herculano-Houzel, 2018), we allow ourselves to suggest that in each of the three groups of the animals, D120 should have a positive impact on the mammalian brain; and humans are unlikely to be the exception (Herculano-Houzel, 2018).

Supplement

0	•	C	. 1	1	1	1
(omn	oricon	of cos	ntral	and	cubor	
COHID	anson	0100	шил	anu	SUDEL	OUD I
					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	



Questiont	Censoring var.	: Censor (C	censored cases are marked with
Survival	CIII? - 21,4114	+ ui - 2 p -	,00002
512.00	Group	20,0000	
513,00	Cubaroup (	-29,0000	
537,00	Subgroup	-27,0000	
549,00	Contro	-25,0000	
596,00	Contro	-22,0000	
598,00	Contro	-22,0000	
642,00	Subgroup	-19,0000	
698,00	Subgroup	-16,0000	
698,00	Contro	-16,0000	
708,00	Contro	-12,0000	
708,00	Contro	-12,0000	
751,00	Contro	-9,0000	
793,00	Contro	-6,0000	
793,00	Subgroup *	-6,0000	
803,00	Contro	-3,0000	
880,00	Subgroup *	0,0000	
880,00	Subgroup *	0,0000	
897,00	Subgroup *	3,0000	
1018,0	Subgroup *	5,0000	
1135,0	Subgroup *	7,0000	
1157,0	Subgroup *	9,0000	
1376,0	Subgroup 2	12,0000	
1376,0	Subgroup 2	12,0000	
1382,0	Subgroup 2	15,0000	
1517,0	Subgroup 2	17,0000	
1573,0	Subgroup 2	20,0000	
1573,0	Subgroup 2	20,0000	
1598,0	Subgroup 2	23,0000	
1630,0	Subgroup 2	25,0000	
1670,0	Subgroup 2	27,0000	
1762,0	Subgroup 2	29,0000	

			8			
	Descriptive st	atistics for e	ach group (S	urvival Analys	is)	
Group	Median	Mean	Std.Dv.	No.uncsd	N.censrd	Total N
Control	703,000	671,900	101,4741	10	0	10
Subgroup 1	880,000	863,700	203,6926	10	0	10
Subgroup 2	1573,000	1545,700	132,8265	10	0	10
Total	880,000	1027,100	408.6563	30	0	30

Comparison of control and subgroup 1

Survival	Gehan's Wilcox WW = -56,00 St Test statistic = -	on Test (Surv um = 2650,0 -2,08272 p =	vival Analysis) Var = 697,37 ,03728
Time	Group	R1	R2
513,00	Control	1,00000	20,00000
537,00	Subgroup 1	2,00000	19,00000
549,00	Control	3,00000	18,00000
598,00	Control	4,00000	16,00000
598,00	Control	4,00000	16,00000
642,00	Subgroup 1	6,00000	15,00000
698,00	Subgroup 1	7,00000	13,00000
698,00	Control	7,00000	13,00000
708,00	Control	9,00000	11,00000
708,00	Control	9,00000	11,00000
751,00	Control	11,00000	10,00000
793,00	Subgroup 1	12,00000	8,00000
793,00	Control	12,00000	8,00000
803,00	Control	14,00000	7,00000
880,00	Subgroup 1	15,00000	5,00000
880,00	Subgroup 1	15,00000	5,00000
897,00	Subgroup 1	17,00000	4,00000
1018,0	Subgroup 1	18,00000	3,00000
1135,0	Subgroup 1	19,00000	2,00000
1157,0	Subgroup 1	20,00000	1,00000

	Cox-Mantel	Test (Survival Analysis
	I = 2,985392	U = -4,60736
	Test statistic	= -2,66656 p = ,0076
Risk	A(I)	
10,00000	0,500000	
10,00000	0,526316	
9,000000	0,500000	
9,000000	0,529412	
9,000000	0,600000	
8,000000	0,571429	
7,000000	0,583333	
7,000000	0,700000	
7,000000	0,777778	
6,000000	0,857143	
6,000000	1,000000	
4,000000	1,000000	
3,000000	1,000000	
2,000000	1,000000	
1 000000	1 000000	

#### Comparison of control and subgroup 2

Comparison of control and subgroup 2

1				_			
Survival	Gehan's Wilcoxon Test (Survival Analysis) WW = -100,0 Sum = 2652,0 Var = 697,89 Test statistic = -3,74749 p = ,00018						
Time	Group	R1	R2				
513,00	Control	1,00000	20,00000				
549,00	Control	2,00000	19,00000				
598,00	Control	3,00000	17,00000				
598,00	Control	3,00000	17,00000				
698,00	Control	5,00000	16,00000				
708,00	Control	6,00000	14,00000				
708,00	Control	6,00000	14,00000				
751,00	Control	8,00000	13,00000				
793,00	Control	9,00000	12,00000				
803,00	Control	10,00000	11,00000				
1376,0	Subgroup 2	11,00000	9,00000				
1376,0	Subgroup 2	11,00000	9,00000				
1382,0	Subgroup 2	13,00000	8,00000				
1517,0	Subgroup 2	14,00000	7,00000				
1573,0	Subgroup 2	15,00000	5,00000				
1573,0	Subgroup 2	15,00000	5,00000				
1598,0	Subgroup 2	17,00000	4,00000				
1630,0	Subgroup 2	18,00000	3,00000				
1670,0	Subgroup 2	19,00000	2,00000				
1762,0	Subgroup 2	20,00000	1,00000				

## Volume-9 | Issue-8 | August - 2019 | PRINT ISSN No. 2249 - 555X

Control Experiment

	Cox-Mantel Test (Survival Analysis)				
	Test statistic = -4,66027 p = ,00000				
Risk	A(I)				
10,00000	0,500000				
10,00000	0,526316				
10,00000	0,555556				
10,00000	0,625000				
10,00000	0,666667				
10,00000	0,769231				
10,00000	0,833333				
10,00000	0,909091				
10,00000	1,000000				
8,000000	1,000000				
7,000000	1,000000				
6,000000	1,000000				
4,000000	1,000000				
3,000000	1,000000				
2,000000	1,000000				
1,000000	1,000000				

_

## Comparison of subgroups 1 and 2

	Gehan's Wilcoxon Test (Survival Analysis)					
	WW = -100,0 3	WW = -100,0 Sum = 2654,0 Var = 698,42				
Survival	l est statistic =	-3,74608 p =	-,00018			
Time	Group	R1	R2			
537,00	Subgroup 1	1,00000	20,00000			
642,00	Subgroup 1	2,00000	19,00000			
702.00	Subgroup 1	3,00000	17,00000			
793,00	Subgroup 1	4,00000	17,00000			
880.00	Subgroup 1	5,00000	15,00000			
897.00	Subgroup 1	7,00000	14,00000			
1018.0	Subgroup 1	8,00000	13 00000			
1135.0	Subgroup 1	9,00000	12 00000			
1157.0	Subgroup 1	10,00000	11 00000			
1376.0	Subgroup 2	11,00000	9 00000			
1376.0	Subgroup 2	11,00000	9,00000			
1382.0	Subgroup 2	13,00000	8,00000			
1517.0	Subgroup 2	14,00000	7.00000			
1573.0	Subgroup 2	15.00000	5,00000			
1573.0	Subgroup 2	15,00000	5,00000			
1598.0	Subgroup 2	17.00000	4,00000			
1630,0	Subgroup 2	18,00000	3,00000			
1670,0	Subgroup 2	19,00000	2,00000			
1762,0	Subgroup 2	20,00000	1,00000			
Cox-Mantel Test (Survival Analysis)						
	Cox-Mante	l Test (Surv	ival Analysis	)		
	Cox-Mante	I Test (Survi 66 U = -6,64	ival Analysis 605	)		
	Cox-Mante I = 2,02900 Test statis	I Test (Survi 66 U = -6,64 tic = -4,6656	ival Analysis 605 8 p = ,0000	) 0		
Risk	Cox-Mante I = 2,02900 Test statis A(I)	el Test (Survi 66 U = -6,64 tic = -4,6656	ival Analysis 605 i8 p = ,0000	) 0		
Risk 10,00000	Cox-Mante I = 2,02900 Test statis A(I) 0,50000	Test (Survise) = -6,640 tic = -4,6656	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000	Cox-Mante I = 2,02900 Test statis A(I) 0,50000 0,52631	H Test (Survi 66 U = -6,64 tic = -4,6656 0 6	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000	Cox-Mante I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555	H Test (Survi 66 U = -6,644 tic = -4,6656	ival Analysis 605 :8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000	Cox-Mante I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823	I Test (Survi 66 U = -6,644 tic = -4,6656 0 6 6 6 5	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000	Cox-Mante I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500	El Test (Survi 66 U = -6,64 tic = -4,6656 0 6 6 5 10	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000	Cox-Mante I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428	El Test (Survi 66 U = -6,64 tic = -4,6656 0 6 6 15 10 16 16 16	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000	Cox-Mante I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923	El Test (Survi 66 U = -6,64 tic = -4,6656 0 6 6 10 10 11	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000	Cox-Mante I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923 0,83333	El Test (Survi 66 U = -6,64 tic = -4,6656 0 6 6 10 10 11 13	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000	Cox-Manter I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923 0,83333 0,9000	El Test (Survi 66 U = -6,64 tic = -4,6656 0 6 6 10 11 13 11	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000	Cox-Manter I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923 0,83333 0,90909	El Test (Survi 66 U = -6,64 tic = -4,6656 0 6 6 10 11 13 11 10	ival Analysis 605 8 p = ,0000	) D		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000	Cox-Manter I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923 0,83333 0,90900 1,00000	Test (Survi 66 U = -6,64i 10  66  10  16  16  16  16  16  17  10  10  10  10  10  10  10  10	ival Analysis 605 8 p = ,0000	) D		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 8,000000	Cox-Manter I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923 0,83333 0,90900 1,00000	Test (Survi 56 U = -6,64) tic = -4,6656 0 6 6 10 10 10 10 10 10 10 10 10 10	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 8,000000 7,000000	Cox-Manter I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923 0,83333 0,90909 1,00000 1,00000	El Test (Survi 66 U = -6,64 tic = -4,6656 10 16 16 16 16 11 10 10 10 10 10 10 10 10 10	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 8,000000 7,000000 6,000000	Cox-Manter I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923 0,83333 0,90909 1,00000 1,00000 1,00000	El Test (Survi 66 U = -6,64 tic = -4,6656 10 16 16 16 16 16 11 10 10 10 10 10 10 10 10 10	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 8,000000 7,000000 6,000000 4,000000	Cox-Manter I = 2,02900 Test statis A(I) 0,50000 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923 0,83333 0,90909 1,00000 1,00000 1,00000 1,00000	I Test (Survi 66 U = -6,64i 10 6 10 6 10 6 10 6 11 1 10 0 10 0	ival Analysis 605 8 p = ,0000	) 0		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 8,000000 7,000000 6,000000 4,000000 3,000000	Cox-Manter I = 2,02900 Test statis A(I) 0,52631 0,55555 0,58823 0,62500 0,71428 0,76923 0,83333 0,90909 1,00000 1,00000 1,00000 1,00000 1,00000	I Test (Survi 66 U = -6,64i 10 = -4,6656 10 = -4,6656 10 = -4,6656 10 = -4,66566 10 = -4,66566 10 = -4,66566 10 = -4,66566 10 = -4,66	ival Analysis 605 8 p = ,0000	)		
Risk 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 10,00000 8,000000 7,000000 6,000000 4,000000 2,000000	Cox-Manter I = 2,02900 Test statis A(I) 0,52631 0,55555 0,55823 0,62500 0,71428 0,76923 0,83333 0,90909 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000 1,00000	I Test (Survi 66 U = -6,64i 10 = -4,6656 10 = -4,6656 10 = -4,6656 10 = -4,6656	ival Analysis 605 8 p = ,0000	)		



	Gehan's Wilcoxon Test (Survival Analysis)					
3 8 74	WW = -93,00 Sum = 5774,0 Var = 1501,2					
Survival	Test statistic =	-2,37445 p =	,01758			
Time	Group	RT	R2			
57,000	Control	1,00000	26,00000			
/1,000	Control	2,00000	25,00000			
100,00	Experiment	3,00000	24,00000			
129,00	Control	5,00000	23,00000			
140,00	Control	6,00000	16,00000			
195,00	Control	6,00000	16,00000			
195.00	Experiment	6,00000	16,00000			
195.00	Control	6,00000	16,00000			
195.00	Experiment	6,00000	16,00000			
195.00	Experiment	6,00000	16,00000			
300.00	Control	12,00000	15,00000			
311.00	Control	13,00000	13,00000			
311,00	Experiment	13,00000	13,00000			
318,00	Control	15,00000	12,00000			
325,00	Control	16,00000	10,00000			
325,00	Control	16,00000	10,00000			
326,00	Experiment	18,00000	9,00000			
328,00	Control	19,00000	8,00000			
344,00	Experiment	20,00000	7,00000			
350,00	Experiment	21,00000	6,00000			
370,00	Experiment	22,00000	5,00000			
538,00	Experiment	23,00000	3,00000			
538,00	Experiment	23,00000	3,00000			
645,00	Experiment	25,00000	2,00000			
658,00	Experiment	26,00000	1,00000			
	Cox-Mante	el Test (Survi	val Analysis)	)		
	I = 3,79483	I = 3,794835 U = -5,87173				
	Test statis	Test statistic = -3,01418 p = ,00258				
Risk	A(I)					
13,00000	0,50000	00				
13,00000	0,52000	00				
13,00000	0.54166	67				
13,00000	0,56521	17				
12,00000	0.54545	55				
12 00000	0.57142	29				
9,000000	0,60000	00				
0,000000	0,64285	37				
9,000000	0,66666	37				
8,000000	0,00000	72				
0,000000	0,12121	5				
0,000000	0,88888	99				
7,000000	0,87500	00				
7,000000	1,00000	00				
6,000000	1,00000	00				
5,000000	1,00000	00				
4,000000	1,00000	00				
2,000000	1,00000	00				
1,000000	1,00000	00				



#### **Conflict of interests:**

the authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

#### REFERENCES

- Heilbronn L.K. and Ravussin E. (2003) Caloric restriction and aging; review of the literature and implications for studies in humans1'2'3. Am.j.Clin.Nutr.V.78-№ 3.-P. 361-369
- Wilkinson J.E., Burmeister L., Brooks S.V., Chan C.C., Friedline S., Harrisnn D.E., Hejtmancik J.F., Nadon N., Strong R., Wood L.K., Woodward M.A., & Miller R.A.(2012) Rapamycin slow aging in mice. Aging Cell -V.11.-P. 675-682. 2
- Cambronne Azan Steward M.L., Kim D.H., Jones-Brunette A.M., Morgan R.K., & Farrens D.L., (2016) Biosensor reveals multiple sourcas for mitochondrial NAD. Science-V. 352.-Issue 6292.-P.1474-1477. 3
- Science, -V. 352.-Issue 6292.-P.14/4-14/1.
  Shabalina I.G., Vyssokikh M.Yu, Gibanova N., CsikaszR.I., Edgar D., Hillden-Waldemarson A., Rozhdestvenskaya Z., Bakeeva L.E., Vays V.B., Pustovidko A.V., Skulachev M.V., Cannon B., Skulachev V.P., & Nedergaard J. Improved Health-span and lifespan in mtDNA mutator mice treated with the mitochondrially targeted antioxidantSkQ1 (2017) Aging.-V.9.-Issue 2.-P.315-330.
  Goodman L.R., Khan Z., & Goldberg J.M. Assessing importance of reproductive surgery 4.
- 5. Abstracts to be presented at the 72nd Scientific Congress of the American Society for Reproductive Medicine. -October 17-19. Solt Lake City, Utah. Vol. 106, № 35. BakerD.J., Childs B.G., Durik M., Wijers M.E., Sieben C.J., Zhong J., Sa
- , Saltness R.A. 6. Jeganathan K.B., Verzosa G.C., Pezeshki A., Khazaie K., Miller J.D., & Deursen Jan M. van (2016) Naturally occuring p16lnk4a-positive cells shorten healthy lifespan. Nature.-V. 530.-P.184-189.
- Nature V. 530-F169-169.
  Ocampo A., Reddy P, Martinez-Redondo P., Platero-Luengo A., Hatanaka F., Hishida F., Li M., Lam D., Kurita M., Beyret E., Araoka T., Vazquez-Ferrer E., Donoso D., Roman J.L., Xu J., Esteban C.R., Nunes G., Delicado E.N., Campistol J.M., Guillen I., Guillen F., & Belmonte J.C.I. (2016) In vivo amelioration of age-associated hellmarks by partial
- Figure 2010 and Control of the antibiotic for the constraints of partial reprogramming. Cell-V167-Issue 7.-P. 1719-1733.
  Zhang Y., Kim M.S., Jia B., Yan J., Zuniga-Hertz J.P., Han C., & Cai D.(2017)
  Hypothalamic stem cells control ageing speed partly through exosomal miRNA Nature;
  Doi:10.1026/j.ecum.2020. 8
- Hypothalamic stem cells control ageing speed partly through exosomal miRNA Nature; DOI: 10.1038/nature23282
  Das M.M., Godoy M., Chen S., Moser V.A., Avalos P., Roxas K.M., Dang I., Yanez A., Zhang W., Bresee C., Arditi M., Liu G.Y., Svenden C.N., & Goodridge H.S. Young bone morrow transplantation preserves learning and memory in old mice Communications Biology, 2019 2 (1)DOI: 10.1038/s42003-019-0298-5
  Postnov S.E. A method for producing medical and biologically active substances (2013) Patent № 2479318. 20.04.2013/ Moscow.Russia.
  Kaplan E.L.,& Meier P. Nonparametric estimation from incomplete observations J. Amer. Statist. Assoc. 1958 282: 457-481. 9 10.
- 11.
- Gehan E. (1965) A generalised Wilcoon test for comparing arbitrarily singly-consored samples Biometrika 52: 203-223. 12
- Mantel N.(1966) Evaluation of survival data and two new rank order statistics arising in its consideration Cancer Chemotherapy Reports –50 (3): 163-170. 13.
- Vanderbilt University. (2018)- "Lifespan and sexuality maturity. depends on your brain more than your body: 'Brain Soup' research connects number of neurons to longevity'' Science Daily.30 October 2018. www. sciencedaily.colm/ releases/ 2018/ 14 10/181030150718.htm
- Herculano-Houzel S. (2018)– Longevity and sexual maturity vary across species with number of cortical neurons, and humans are no exception Journal of Comparative Neurology–2018; DOI: 10.1002/cne.24564. 15.

36