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INTRODUCTION: 
HIV possess high rate of genetic variation, one of the major obstacles 
for its successful eradication. It occurs as a result of mutations due to 
error-prone reverse transcription, high levels of viral turnover, 
retroviral recombination and selection pressure from the immune 
system. In HIV, recombination occurs much more frequently than 

21,22,24,28,40,43,52,69,72,73mutation, and is a major cause of viral diversi fication.  

The key step in the HIV lifecycle is the formation of the provirus, from 
cDNA produced during reverse transcription process. Integration is 
promoted by the viral IN enzyme, which catalyzes two distinct 
reactions. The first reaction is 3' processing, catalyzes an endonucl 
eolytic cleavage at the 3′ site of the conserved CA, which generally 
releases a terminal GT dinucleotide from the U5 and U3 ends of HIV-1 
DNA in the cell cytoplasm (Fig. 1). The resulting viral DNA is then 
transferred into the nucleus and IN uses 3'-OH groups formed during 3' 
processing DNA in a staggered fashion and covalent joining of the HIV 
3'-hydroxyl groups with the host DNA 5' phosphate ends and 
establishes new phosphodiester bond between them with the help of 

6,7,14,17,19,29,32,34,36,37,44,45,47,51,55,56,61-63,65,70,74host co-factors.  
  
HIV-1 IN generally cleaves two bases symmetrically at both the ends 
of U5 and U3 linear double-stranded DNA regions (Fig. 1), While the 
sequences of HIV-2 IN may not always act symmetrically and cleaves 
two and three bases, respectively, from the U3 and U5 ends of the linear 

37,49 double-stranded DNA prior to integration.
  

In HIV infection two different forms of latency exits preintegration 
and postintegration latency and thus we need to target the multiple 
steps of viral life cycle in order to eradicate HIV in addition to HAART 

10,12,13,27,30,38,46,51,61,69treatment.  
  
Varicella-zoster virus (VZV) causes varicella (chickenpox), generally 
a mild rash disease of childhood but rarely causes serious disease in 
adults and immunosuppressed persons. The live, attenuated VZV Oka 
and Oka/ Merck strain vaccine is safe and effective for preventing 
childhood infection. VZV vaccine possesses multiple antigenic 

epitopes offer as recombinant vaccines against other infectious 
48,67,71,72diseases.

MATERIALS AND METHODS
1. HIV positive and negative blood sample collection: 
After obtaining informed consent, blood samples will be collected 
from normal donors and infected individuals by venepuncture tubes 
containing EDTA anticoagulant. About 10 ml of blood will be 
collected for screening and coculture. A total of 10 HIV-1 positive 
samples will be collected for the study and all the HIV positive samples 
will be retested by a rapid test method. All HIV-1 positive samples will 
be also screened for HIV-2, HBV and HCV. Only negative samples for 
these infections will be included in the study. 

Similarly, 10 HIV donor blood (negative) samples will be collected in 
EDTA anticoagulant tubes and all the HIV negative samples will be 
tested by a rapid test method. About 10 ml of blood will be collected for 
screening and coculture. All HIV negative samples also will be 
screened for HBV and HCV. Only negative samples for these 
infections will be included in the study. 

Additionally, after obtaining informed consent from the parents of 5 
children, blood samples of recently chickenpox vaccinated children 
will be collected and tested for IgM and IgG antibodies. The 
seropositive blood will be used for confirmation of recombination 
between HIV-1 and VZV genomes.

2. Processing of HIV-1 positive blood sample: 
PBMC will be separated as per standard protocol. PBMC will be 
stained to know viability of the cells with trypan blue staining (viable 
PBMC are clear whereas nonviable PBMC are blue) and cells will be 
counted with hemacytometer.

3. Processing of HIV negative blood sample: 
(1) PBMC will be separated as above for positive blood samples. (2) 
Stimulation PBMC: donor PBMC will be stimulated as per the 
standard protocol.

4. Variped (Varivax) and Varilrix vaccine DNA extraction: 
Variped is the live attenuated Oka/Merck strain of varicella-zoster 
virus and Varilrix is the live attenuated Oka strain. The vaccines DNA 
will be extracted as per DNA extraction kit protocol. 

The integration of Human Immunodeficiency Virus-1 (HIV-1) DNA into the host DNA is a critical step in the HIV life 
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TABLE 1: HUMAN HERPESVIRUS 3 STRAIN VARILRIX, 
COMPLETE GENOME, GENBANK: DQ008354.1, 5' 

OVERHANG: GT (FROM  NCBI)

Pick
all

Enzyme Specificity Total
cuts

Compatible
cuts

% activity in

1.1 2.1 3.1 CS
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5. VZV DNA restriction enzyme digestion: 
The extracted VZV DNA will be subjected to restriction sequential 
digestion with the combination of two enzymes such as (1) BceAI and 
FauI, (2) BceAI and Hpy188III and (3) FauI and Hpy188III. This 
digestion method yields double stranded VZV DNA with both ends GT 
dinucleotide 5' overhangs. The restriction enzyme digestion will be 
performed as per manufacture's instruction. 

Human herpesvirus 3 strain Variped (Varivax) and Varilrix complete 
genome obtained from The National Center for Biotechnology 
Information (NCBI), Bethesda, MD USA, National Library of 
Medicine, online resources. The full length VZV DNA was subjected 
to restriction enzymes digestion by blast from NCBI online resources. 
Out of many enzymes digestion, only 3 restriction enzymes generated 
5' GT cohesive ends shown in the table 1, of which combination of any 
two enzymes produced only at 5 sites double stranded continuous 
stretch VZV DNA ends have 5' GT cohesive at both the ends shown in 
the tables 2 and 3. Similarly, Human herpesvirus 3 strain Variped 
(Varivax) complete genome processed as for Varilrix and DNA 
digestive fragments shown in the tables 4, 5 and 6. 

6. VZV DNA transfection to HIV negative PBMC: 
The restriction enzyme digested VZV DNA will be transfected to HIV 

negative PBMC by standard transfection protocol. 

7. Ligase enzyme transfection to negative PBMC:
Ligase will be transfected to HIV negative PBMC as protein 
transfection protocol.

NOTE: 
Trypan blue stain will be performed after donor PBMC separation, 
stimulation of PBMC, VZV DNA transfection, ligase enzyme 
transfection and positive PBMC separation.  

 28. HIV-1 Qualitative PBMC MicrococultureProtocol : 
Normal donor PBMC will be separated from the whole blood by 
density gradient method and then resuspend the cells in IL-2-growth 
medium. This is followed by transfection of VZV DNA and Ligase to 

6donor PBMC. In two wells of a 24-well tissue culture plate 1 x 10  PHA 
stimulated VZV and ligase transfected negative PBMC will be added 

6with 1x10  patient PBMC and final volume will be adjusted to 2 ml 
with growth medium. 2 ml of sterile water will be put in the corner 
wells to maintain humidity. Negative PBMC separately coculture to 
verify the absence of HIV infectivity. Lastly, only HIV coculture will 
be performed with positive HIV-1 sample to know the replication of 
HIV as positive control and incubated at 37°C with 5% CO . On days 4, 2

11 and 18 carefully remove 1 ml of supernatant from the well without 
disturbing the cells and fed with an equal volume of fresh growth 
medium only. On days 7, 14 and 21, 1.0 ml of medium will be removed 
without disturbing cells and replaced with 1 ml fresh growth medium 

5containing 5 x 10  PHA-stimulated negative cells and culture will be 
maintained for 21 days. 

39. HIV-1 Qualitative PBMC Macrococulture Protocol : 
About 3-5 million patient PBMC will be taken in a labeled sterile cell 
culture flask and about 3-5 million PHA-stimulated, VZV DNA and 
ligase enzyme transfected negative PBMC will be added. Donor 
PBMC separately coculture to verify the absence of HIV infectivity. 
Lastly, only HIV positive sample coculture will be performed to know 
the replication of HIV as positive control. On days 4, 11, 18 and 25 
carefully removed half of supernatant from the flask without 
disturbing the cells and fed with an equal volume of fresh growth 
medium only. On days 7, 14 and 21 half of supernatant carefully 
removed from the flask without disturbing the cells and will be fed with 
an equal volume of fresh growth medium containing 3-5 million PHA-
stimulated PBMC and culture will be maintained for 28 days. 

10. RECOMBINATION CONFIRMATION: 
A.  Micrococulture: On days 7, 14 and 21 about 1 ml of cultured cells 

will be subjected to one or more of the following tests such as HIV 
DNA PCR, Agglutination test with VZV seropositive sample 
and/or genome sequencing for confirmation of genomic 
recombination between HIV-1 and varicella-zoster virus. On days 
4, 7, 11, 14, 18, 21 and 25 supernatant will be subjected to HIV 
RNA PCR and HIV-Tridot plus antigen qualitative assay for 
positive growth confirmation.

B.  Macrococulture: On days 7, 14, 21 1nd 28 about 5 ml of cultured 
cells will be subjected to one or more of the following tests such as 
HIV DNA PCR, Agglutination test with VZV seropositive sample 
and/or genome sequencing for confirmation of genomic 
recombination. On days 4, 7, 11, 14, 18, 21, 25 and 28 supernatant 
will be subjected to HIV RNA PCR and HIV-Tridot plus antigen 
qualitative assay for positive growth confirmation.  

RESULTS: 
The hypothetical anticipation is based on the principles of IN enzyme 
action on the HIV-1 DNA ends during 3' processing operation (Fig. 1) 
and varicella restriction enzyme digested DNA ligation. When, donor 
DNA transfected PBMC coculture with HIV-1 positive PBMC for 4 
weeks, because of complementarity phenomenon, annealing may 
occur between DNA of HIV 3'hydroxyl ends with DNA of VZV 5' 
phosphate ends. 

To the best of my knowledge, the present hypothetical speculation has 
no comparison since no other studies performed similar kind of 
research and I assume IN enzymatic action may be inhibited by 
cohesive ends principles with VZV DNA complementary strand. In 
this phenomenon, the law of genetics governs the joining of 
phosphodiester bond between the 3'hydroxyl of HIV-1 DNA and 
5'phosphate of VZV DNA. Complementary double stranded DNA 
formation occurs between the HIV-1 DNA and VZV DNA owing to the 

BceAI ACGGC(N)12

NN
275 18 100 100 100 100

FauI CCCGCNNNN
NN

302 27 100 50 10 100

Hpy188I
II

TCNNGA 395 12 100 100 10 100

TABLE 2: SEQUENCE DIGESTED WITH: BceAI AND FauI 
WITH STICKY ENDS (BOTH ENDS WITH 5' GT 

NUCLEOTIDE OVERHANGS):  VARILRIX VACCINE 
(FROM  NCBI)

BceAI FauI

1 28  * 16916/16918 30  *  17055/17057
2 142 * 67139/67141 119  * 67353/67355
3 200 * 91831/91833 173  * 91794/91796
4 235 * 107091/107093 216  * 107120/107122

TABLE 3: SEQUENCE DIGESTED WITH: FauI AND 
Hpy188III WITH STICKY ENDS (BOTH ENDS WITH 5' GT 

NUCLEOTIDE OVERHANGS): VARILRIX VACCINE 
(FROM  NCBI)

FauI Hpy188III

1 300  * 124728/124730 395  *  124650/124652

TABLE 4: HUMAN HERPESVIRUS 3 STRAIN VARIPED 
(VARIVAX), 

COMPLETE GENOME GENBANK: DQ008355.1, 
5' OVERHANG: GT (FROM  NCBI)

Pick
all

Enzyme Specificity Total
cuts

Compatible
cuts

% activity in

1.1  2.1  3.1  CS  

BceAI ACGGC
(N) NN12

275 18 100 100 100 100

FauI CCCGCN
NNNNN

301 27 100 50 10 100

Hpy188I
II

TCNNGA 394 12 100 100 10 100

TABLE 5: SEQUENCE DIGESTED WITH: BceAI AND FauI 
WITH STICKY ENDS (BOTH ENDS WITH 5' GT 

NUCLEOTIDE OVERHANGS): VARIPED (VARIVAX) 
VACCINE (FROM  NCBI)

BceAI FauI

1 28  * 16916/16918 30  *  17055/17057

2 142 * 67136/67138 120  * 67350/67352
3 200 * 91828/91830 174  * 91791/91793

4 235 * 107088/107090 217  * 107117/107119

TABLE 6: SEQUENCE DIGESTED WITH: FauI AND 
Hpy188III WITH STICKY ENDS (BOTH ENDS WITH 5' GT 

NUCLEOTIDE OVERHANGS):  VARIPED (VARIVAX) 
VACCINE (FROM  NCBI)

FauI Hpy188III

1 299  * 124722/124724 394  *  124644/124646
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fact that 5' overhangs produced by HIV-1 IN during 3' processing and 
VZV DNA 5' overhangs produced by restriction enzyme digestion. 

If HIV-1 genome is able to combine with the digested varicella-zoster 
virus genome, consequently, a novel HIV-1 recombinant species may 
be formed. As a result, the formation of provirus may be inhibited with 
human genome. Various studies were conducted by many authors on 
IN enzyme activity inhibition strategies which are cited here for 
mentioning purpose only, not for comparison. The present hypothesis 
is compared with others' work with respect to HIV DNA end 
modification process. Haobo Zhou et al reported that the most 
important feature of the viral att sequence for integration is the 
sequence 59-CAXX-39. Replacing any one of the two bases 
substantially impairs 39-end processing and strand transfer. Alteration 
of both the U3 and U5 conserved CA to TG results in severe reduction 
in integration. A highly conserved CA dinucleotide adjacent to the 3' 
processing site of HIV-1 is important for both the 3' processing and 
strand transfer reactions. Alteration of nucleotide sequences are poor 

47,65substrates for HIV-1 IN.  Aviad Levin et al and Joseph Rosenbluh et 
al claims that HIV integration can be blocked by peptides. Frederic D. 
Bushman et al have studied modifications of short region on both DNA 
strands at the ends of the viral DNA, block IN protein function. John 
Capodici et al studied inhibition of HIV-1 infection by small 
interfering RNA-mediated RNA Interference. Robert L Lafemina et al 
reported importance of substrate specificity and IN-mediated 
processing of an LTR substrate could be inhibited by competition with 
LTR and non-LTR oligonucleotides. 

In the present postulation, recombination between HIV-1 and VZV 
compared with other studies. Many studies reported genetic 
recombination between HIV 1 and 2 and intra species recombination. 
Kazushi Motomura et al. studied genetic recombination between HIV-
1 and HIV-2. Mattias Mild et al. reported intrapatient recombination 
between HIV Type 1 R5 and X4 Envelopes. David N Levy et al 
reported retroviral recombination during reverse transcription and 
other stages of viral life cycle. 

If the digested varicella genome anneals to HIV cohesive strand at one 
or both ends may generate integration deficient episomal HIV species. 
Recombinant HIV/VZV DNA could be a future potential candidate 
vaccine which may act on various stages of HIV life cycle. 
Recombination is being used experimentally by virologists to create 
new vaccines for example vaccinia viruses can carry vaccinia virus 

64DNA recombined with DNA from other sources (exogenous DNA).  
Denise C. Hsua et al reported recombinant HIV-1 Env glycoprotein 
subunit vaccines, polyvalent mosaic antigens expressed on viral 
vectors. Donatella RM Negri et al demonstrated that non-integrating 
lentiviral vectors induce a strong and sustained immune response in 
vivo after a single injection. Wayne L. Gray reported recombinant 
varicella-zoster virus vaccines for expression of heterologous 
antigens. Yang Ou et al reported recombinant simian varicella viruses 
produce immune responses to simian immunodeficiency virus 
antigens in immunized vervet monkeys. Klaus Wanisch et al showed 
that Integration-Deficient Lentiviral Vectors (IDLVs) are efficient 
delivery vectors generate high levels of nonreplicating episomal 
molecules. 

The HIV replication cycle offers multiple potential targets for genetic 
manipulation. Christopher W Peterson et al reported combinatorial 
anti-HIV gene therapy, CCR5 disruption, anti-HIV entry therapies, 
inhibition of viral uncoating and integration, disruption of HIV 
provirus. In the last few years rapid development has been witnessed 
for modification of gene expression by gene modification 
technologies. Berlin patient is the classical example of gene 

20,35,50modification approach.

DISCUSSION: 
One of the major difficulties in treating HIV infection and generating 
an effective vaccine is due to high rate of genetic variation in the viral 

52,69population.  Highly active antiretroviral therapy (HAART) 
significantly improves life span of people living with HIV/AIDS. 
However, persistence of HIV in reservoirs as pre and postintegration 
latency required lifelong medication with many complications 
including toxicity and emergence of multidrug resistant mutants. Cells 
and gene therapies offer the promising new methods of treatment for 

35 HIV infection in the absence of chronic antiviral pharmacotherapy.
The present exploration concept could be one of the treatment 
modality as cells, gene therapy or vaccine development.

The resultant recombinant HIV-1 and VZV, a novel recombinant virus 
may act as follows. (1). the recombinant HIV particles may act as 
extrachromosomal DNA as episomes, produce Integration Deficient 
Species (IDP), and thus prevent the formation of provirus. (2). 
Recombinant molecule may proliferate with or without production of 
antigens of one or both HIV and VZV genomes which may induce 
effective immune response. (3). When recombinant virus cocultivate 
with wild HIV, it may overgrow the wild virus by interference 
phenomenon and may significantly decrease the wild virus. (4). 
Recombinant HIV particles may be used In vivo to study viral behavior 
with wild virus.

Eva Poveda et al reported exosomes as new players in HIV 
pathogenesis, exosomes can carry different molecules in their lumens 
including proteins, RNA and other biological materials. It may provide 
novel strategies act at different aspects of HIV life cycle. 

CONCLUSION: 
The hypothetical HIV and VZV cocktail virus may provide a 
significant insight for the development of novel classes of anti-HIV 
drugs, vaccine or genetic mechanisms that work synergistically or at 
least augments with the existing pharmacotherapy. However, several 
problems of various virological and immunological responses have to 
be addressed and resolved before considering the effectiveness of this 
hypothesis. HAART alone is not enough to achieve functional cure but 
it needs enhanced immune system which can be achieved by 
vaccination, cells, gene therapy or other effective modes. While a 
solution will not be achieved by tomorrow, but the battle against HIV-1 
development of new therapeutic strategies are well-underway.
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