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Introduction
Histones are the protein components of nucleosomes. Their main 
functions are to compact DNA and regulate chromatin, in turn, 
inuencing gene regulation. The basic core histone octamer consists of 
H2A, H2B, H3 and H4. Each histone has both a C-terminal and an N-
terminal end. The N-terminal end (enriched with basic amino acids) is 
subject to a variety of post-translational modications, such as 
acetylation, phosphorylation, methylation etc. and these modications 
alter the activity of the genes wrapped around the core histone 
producing various effects depending on the type of modication and 
the residue that is modied at the histone tail. As this inuences the 
chromatin structure, it plays a major role in regulation of processes 
such as transcription, DNA repair, and replication. Histone 
modication sites have been identied by mass-spectrometry and 
biochemical assays (Earley et al., 2007; Zhang et al., 2007) in 
Arabidopsis. Histone modifying enzymes such as histone 
acetyltransferases (HATs), histone deacetylases (HDACs), histone 
methyltransferases (HMTs), and histone demethylases (HDMs) 
maintain such modications.

Histone Modifications In Salt Stress Response
It has been identied that salinity stress responses in plants are 
inuenced by phosphorylation, acetylation, and methylation. 
Transcriptionally active genes are usually associated with histone 
acetylation, and the gene activation is moderated by antipathetic 
actions between the HAT and HDAC proteins. In Arabidopsis, 
hypersensitivity to salt was observed in a mutant for the transcriptional 
adaptor ADA2b, which attunes HAT activity, intimating towards the 
impression that HATs play a pivotal role in salinity tolerance (Kaldis et 
al., 2011). Likewise in maize roots, an increase in the expression level 
of genes responsible for cell wall expansion and extension such as 
ZmEXPB2 and ZmXET1 was discovered under high salinity and has 
been ascribed to the upregulated H3K9 acetylation in the promoter and 
coding regions of the said genes (Li et al., 2014).

Histone Modifications In Drought Stress Response
Drought-responsive genes have been identied and studied in order to 
understand the networking associated with drought response in plants. 
It has been established that expression of drought stress responsive 
genes is proportional with the intensity of drought stress. A correlation 
was found between expression levels of the drought responsive genes 
and changes in histone modications (Kim et al., 2008, 2012; To and 
Kim, 2014). Certain drought stress upregulated genes, such as RD20 
and RD29A(Arabidopsis) were found to be more enhanced with 
certain histone modications such as H3K4me3 and H3K9ac, under 
strong drought conditions with a predominant enrichment of histone 

acetylation (Kim et al., 2008, 2012). A gene in Arabidopsis encoding a 
major enzyme in the ABA biosynthesis pathway, NCED3, was 
d e t e r m i n e d  t o  b e  a c t i v a t e d  b y  t h e  b i n d i n g  o f  H M T 
Arabidopsistrithorax-like 1 (ATX1) via a H3K4me3 modication and 
subsequently an increment in binding was observed under drought 
conditions (Ding et al., 2011). Plants that were ATX1 mutants 
displayed lower transcript levels of drought stress responsive genes 
such as RD29A and RD29B which goes to show that ATX1 mediated 
modications might play an important role in the stress response which 
could be used as an advantage in the process of stress priming. 
Interestingly, the chromatin resetting mechanism that works after the 
advent of non-stressful conditions entails massive amounts of histone 
deacetylation on the drought stress upregulated genes and nucleosome 
replacement. During recovery from drought stress, drought stress-
response genes, RD29A, RD20, and AtGOLS2 exhibited a speedy 
decrement in the histone modication H3K9ac and also the RNA Pol II 
that carries out transcription was also removed from these regions. 
Demethylation is carried out at a signicantly slower rate than 
deacetylation (Kim et al., 2012). Histone acetylation status has also 
been correlated with drought stress and ABA responses in plants. The 
histone acetylation levels increase on the drought-responsive genes 
such as RD20, RD29A, and RD29B and H3K9ac is enriched rapidly in 
these gene regions (Kim et al., 2008). In rice, drought stress 
substantially induced four HAT genes (OsHAC703, OsHAG703, 
OsHAF701, and OsHAM701) and enhanced acetylation of H3K9, 
H3K18, H3K27, and H4K5 under drought stress conditions was 
observed. Expression and overexpression of certain plant-specic 
HDAC (histone deacetylases) genes was shown to elicit responses to 
stress-related plant hormones such as ABA, jasmonic acid, salicylic 
acid and also result in enhanced drought stress tolerance and ABA 
insensitivity (Sridha & Wu, 2006; Demetriou et al., 2009).

Histone Modifications In Nutrient Stress Response
Histone modications play an important role in attaining homeostasis 
for a majority of nutrients. Mutations in these lead to imbalance in 
acquisition, accumulation and retention of the nutrients. With respect 
to this, a lot of studies carried out in accordance with histone 
modications in response to nutrient stress have focused on histone 
methylation, since it seems to be a driving factor in many nutrient-
related mechanisms and is important in modulating transcription 
factor binding (Huang XY et al., 2016).A study showed that to achieve 
iron homeostasis in plants, a symmetric dimethylation of histone 
H4R3 (H4R3sme2) was required (Fan H et al., 2013). Consequently, a 
mutation in the Arabidopsis Protein MethylTransferase 5 (PRMT 5), 
which catalyzes the symmetric dimethylation reaction of H4R3, lead 
to mutant plants with higher iron accumulation in shoots and affected 
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expression of several bHLH genes that regulate iron intake in 
Arabidopsis (Wang N et al., 2013). Another research study reported a 
case of histone acetylation - regulated nutrient homeostasis with the 
observation that mutation of the histone acetyltransferase General 
Control Non-repressed 5 (GCN5) gene results in altered and damaged 
iron translocation from the root to the shoot in Arabidopsis. GCN5 was 
shown to directly bind to the promoters of ve iron- related genes, 
including Ferric Reductase Defective 3 (FRD3) - which is a key factor 
involved in iron nutrition - modulate their acetylation levels of histone 
3 lysine 9 (H3K9ac) and histone 3 lysine (H3K14ac) levels, and 
consecutively regulate their transcript expression (Xing J et al., 2015). 
Aln-like 6 (AL6) is a gene involved in root hair elongation in 
Arabidopsis. AL6 mutants exhibit a pleiotropic phenotype including 
reduced anthocyanin accumulation and very short root hairs, in 
response to low levels of Pi (Chandrika et al., 2013). A study on the 
involvement of trimethylated lysine 4 of histone H3 (H3K4me3) under 
phosphate starvation, revealed that AL6 contains a Plant 
HomeoDomain (PHD) nger that can bind to H3K4me3 (Lee et al., 
2009). The authors suggest that since H3K4me3 is a binding site for 
transcription factors and activators for mRNA elongation and 
maturation; and AL6 gene is able to bind to it, AL6 might affect the 
transcript maturation and constancy of crucial genes involved in root 
hair elongation (Chandrika et al., 2013). Another recent study in 
Arabidopsis revealed that histone acetylation was involved in Pi 
homeostasis through observation of histone deacetylase 19 gene. It 
was found that HD 19 played a vital role in controlling root cell 
elongation in conditions where Pi was inadequate and also regulated a 
certain essential phosphate starvation genes, including some involved 
in Pi sensing and signaling (Chen et al., 2015).

Histone Modifications In Cold Stress Response
Induction of owering can be brought about in plants using the process 
of vernalization which involves exposure of the plant to cold 
temperatures. In Arabidopsis, vernalization is involved in epigenetic 
regulation induced by environmental stresses and has been shown to be 
achieved by long-term exposure to cold temperatures (Song et al., 
2012). On the other hand, short term exposure to non- freezing low 
temperatures has been found to enhance freezing tolerance, and this 
process is known as cold acclimation. Several genes and epigenetic 
regulators have been found to be upregulated under low-temperature 
induced stress conditions, suggesting that the epigenetic and 
transcriptional changes of the target genes may be attributed to their 
up-regulation. In maize, an increase in histone acetylation on cold-
responsive genes, ZmdREB1 and ZmCOR413 was observed. In 
addition to this, the HDAC expression was upregulated in maize 
during cold acclimation and an inclusive deacetylation of H3 and H4 
was also ascertained (Hu et al., 2011). OsDREB1b gene in rice was 
differentially regulated at the transcriptional level and the histone 
acetylation levels were found to be enriched in this gene under cold 
stress (Roy et al., 2014). Histone Deacetylase 6 (HDA6) plays an 
essential role in regulating cold acclimation that confers freezing 
tolerance in Arabidopsis. Its expression was shown to be induced by 
long-term low temperature treatments, and a mutation in this gene 
resulted in sensitivity to freezing stress (To et al., 2011). Furthermore, 
in Arabidopsis, cold-responsive genes COR15A and AtGolS3 
experienced an intermittent decrease in H3K27me3 enrichment during 
cold stress treatment (Kwon et al., 2009). In consequence, it can be 
concluded that the acquisition of stress tolerance through changes in 
the expression of cold-responsive genes as a result of epigenetic 
changes induced by cold stress is feasible. Histone acetyltransferases 
(HATs) are associated with transcriptionally active genes (Berger, 
2002; Kuo et al., 2000) and GCN5 is one such HAT in Arabidopsis. 
ADA2b, a transcriptional activator of HATs, was reported to interact 
with GCN5, and enhance the HAT activity of GCN5 (Stockinger et al., 
2001). Additionally, it was observed that the induction of COR (cold-
regulated) genes by low temperature was delayed, and the nal mRNA 
expression levels were also reduced in ada2b and gcn5 mutants of 
Arabidopsis. An increase in freezing tolerance exhibited by the ada2b 
mutants hint that AdA2b works toward freezing tolerance repression 
via histone acetylation (Vlachonasios et al., 2003).
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