ON TERNARY QUADRATIC DIOPHANTINE EQUATION

$9\left(x^{2}+y^{2}\right)-17 x y+x+y+1=39 z^{2}$

K. Thangamalar

Lecturer (Senior Grade) Mathematics, A.D.J. Dharmambal Polytechnic College, Nagapattinam, Tamilnadu, India

ABSTRACT The ternary quadratic equation in place of non-homogeneous cone given by $9\left(x^{2}+y^{2}\right)-17 x y+x+y+1=39 z^{2}$ is analyzed for its non-zero discrete integer points on it. The different patterns of integer points fulfilling the cone under consideration are obtained. A few interesting dealings between the solutions and special number patterns are offered.

KEYWORDS : Ternary, Non-homogeneous, Quadratic, Integral solutions.

INTRODUCTION

The ternary quadratic Diophantine equations offer an indefinite field for research due to their range [1]. For a general review of various problems, one may refer [2-16]. The communication concerns with yet another interesting ternary quadratic equation $9\left(x^{2}+y^{2}\right)$ $17 x y+x+y+1=39 z^{2}$ representing a cone for determining its considerably many non-zero integral points. Also, a few interesting relations among the solutions are presented.

NOTATIONS

$\mathrm{T}_{\mathrm{m}, \mathrm{n}}$ - Polygonal number of rank n with size m . $\mathrm{P}_{\mathrm{n}}^{\mathrm{m}}$ - Pyramidal number of rank n with size m. $\mathrm{Ct}_{\mathrm{m}, \mathrm{n}}$ - Centered Polygonal number of rank n with size m .
$\mathrm{Gno}_{\mathrm{n}}$ - Gnomonic number of rankn.
$\mathrm{Pr}_{\mathrm{n}}-$ Pronic number of rank n .

METHOD OFANALYSIS

The Ternary quadratic Diophantine equation to be solved for its non-zero discrete integral solution is $9\left(x^{2}+y^{2}\right)-17 x y+x+y+1=39 z^{2}-$ (1)

The replacement of linear transformation
$\mathrm{x}=\mathrm{u}+\mathrm{v}, \mathrm{y}=\mathrm{u}-\mathrm{v}---(2)$
In 1 leads to
$(u+1)^{2}+35 v^{2}=39 z^{2}---(3)$
Special patterns of solutions of (1) exist below.
Pattern I:
Mark 39 as
$39=(2+i \sqrt{ } 35)(2-i \sqrt{ } 35)--(4)$
Imagine that $\mathrm{z}=\mathrm{a}^{2}+35 \mathrm{~b}^{2}---(5)$
Where a, b are non-zero discrete integers.
Use (4) \& (5) in (3) and applying the method of factorization, identify $(u+1)+i \sqrt{ } 35 v=(2+i \sqrt{ } 35)(a+i \sqrt{ } 35 b)^{2}---(6)$

Equating the real and imaginary parts, we have
$u=u(a, b)=2 a^{2}-70 a b-70 b^{2}-1$
$\mathrm{v}=\mathrm{v}(\mathrm{a}, \mathrm{b})=\mathrm{a}^{2}+4 \mathrm{ab}-35 \mathrm{~b}^{2}$
Substituting the above values of u and v in equation (2), the value of x and y are given by
$x=x(a, b)=3 a^{2}-66 a b-105 b^{2}-1$
$y=y(a, b)=a^{2}-74 a b-35 b^{2}-1$
$z=z(a, b)=a^{2}+35 b^{2}$

Thus equation (7) stand for a non-zero discrete integral solutions of (1) in two parameters.

A few interesting properties are given below:

1. $\mathrm{x}(1, \mathrm{~b})-3 \mathrm{y}(1, \mathrm{~b})-78 \mathrm{G}_{\mathrm{not}}=80$
2. $y(a, 1)+z(a, 1)-T_{6, a} \equiv-1(\bmod -73)$
3. $z(1, b)$ is a nasty number
4. $\mathrm{x}(1, \mathrm{~b})+3 \mathrm{z}(1, \mathrm{~b})-12 \mathrm{~T} _(13, \mathrm{~b})=31$

Pattern II: As an alternative of (4) we mark as

Mark 1 as $1=(1+i \sqrt{ } 35)(1-\mathrm{i} \sqrt{ } 35) \quad---(9)$
Imagine that $\mathrm{z}=\mathrm{a}^{2}+35 \mathrm{~b}^{2}---(10)$
equation (3) can be write as
$(u+1)^{2}+35 \mathrm{v}^{2}=39 \mathrm{z}^{2} * 1--(11)$
use (8) $\&(9)$ in (11) and applying the method of factorization define
$(u+1)^{2}+i \sqrt{35} v=\frac{1}{12}(4+2 i \sqrt{35})(1+i \sqrt{35})(a+i \sqrt{35} b)^{2} \quad$--- \quad (12)
Equating real and imaginary part, we have
$u=u(a, b)=\frac{1}{12}\left[-66 a^{2}+2310 b^{2}+420 a b-12\right]$
$v=v(a, b)=\frac{1}{12}\left[6 a^{2}-210 b^{2}+132 a b\right]$
Change a by 12 A and b by 12 B in (10) and (13)
$u=u(a, b)=-792 A^{2}+27720 B^{2}+5040 A B-1$
$\left.v=v(a, b)=72 A^{2}-2520 B^{2}+584 A B \quad\right\} \quad--\quad$ (14)
$z=z(a, b)=144 A^{2}+5040 B^{2}$

Substituting the values of u and v in equation (2), the value of x and y are given by

Thus the equation (15) represents non-zero discrete integral solutions of (1) in two parameters.

A few interesting properties are given below:

1. $x(A, 1)-5 z(A, 1)+2812 \mathrm{G}_{\mathrm{nOA}}+5624=0$
2. $y(1, \mathrm{~B})+6 z(1, \mathrm{~B})-60480$ Pro $_{\mathrm{B}}+28012_{\text {GnoB }}=28013$
3. $z(A, A)$ is a perfect square number
4. $\mathrm{x}(A, 1)-\mathrm{y}(A, 1)-144 T_{4, \mathrm{~A}} \equiv-368(\bmod 1168)$

Pattern III:

Equation (3) can be write as
$(u+1)^{2}=39 z^{2}-35 v^{2}---(16)$
Introducing the linear transformation
$Z=X+35 T$ and $V=X+39 T \quad--(17)$
in (16) we get

$$
\begin{equation*}
X^{2}=1365 T^{2}+\left(\frac{u+1}{2}\right)^{2} \tag{18}
\end{equation*}
$$

Which is satisfied by
$T(p, q)=2 p q$
$u(p, q)=2730 p^{2}-2 q^{2}-1$
$x(p, q)=1365 p^{2}+q^{2}$

Substituting the values of (19) in (17) and using (2), the corresponding integer solutions of (1) are given by
$\left.\left.\begin{array}{l}x=x(p, q)=4095 p^{2}-q^{2}+78 p q-1 \\ y=y(p, q)=1365 p^{2}-3 q^{2}-78 p q-1 \\ z=z(p, q)=1365 p^{2}+q^{2}+70 p q\end{array}\right\} \quad \begin{array}{l}---\quad(20)\end{array}\right\}$

Thus the equation (20) represent a non-zero discrete integral solutions of (1) in two parameters.

A few interesting properties are given below:

1. $x(\mathrm{P}, 1)-3 y(\mathrm{P}, 1) \equiv 10(\bmod 312)$
2. $y(1, \mathrm{q})-z(1, q)+4 \mathrm{~T}_{4, \mathrm{q}}+74_{\text {Ginoq }}=75$
3. $x(a, a)+3 \mathrm{z}(a, a)$ is a nasty number
4. $x(\mathrm{P}, 1)-3 z(P, 1)+66_{\text {Gnop }}=71$

Note: In addition to (17) one may also consider the linear transformation $\mathrm{Z}=X-35 T$ and $V=X-39 T$ following the method presented above different set of solutions are obtained.

CONCLUSION:

In this paper, we have obtainable three singular patterns of non-zero discrete integer solutions of the non-homogeneous cone given by $9\left(x^{2}+y^{2}\right)-17 x y+x+y+1=39 z^{2}$. To end, one may search for patterns of non-zero discrete integer solutions and their corresponding properties for other choices of ternary quadratic diophantine equation.

REFERENCES:

[1] L.E Dickson, History of theory of Numbers, Vol.2, Chelsea publishing company, New York 1952.
[2] M.A. Gopalan, D. Geetha, Lattice points on the hyperbolic of two sheets $x^{2}-6 x y+y^{2}+6 x-$ $2 y+5=z^{2}+4$, impact J. sci tech; Vol (4), No.1, 23-32, 2010.
[3] M.A. Gopalan, and V. Pandichelvi, Integral solutions of ternary quadratic equation $z(x-$ y)=4xy, Impact J.sci TSech; Vol(5), No. 1, 01-06-2011.
[4] M.A. Gopalan, S. Vidhyalakshmi and A. Kavitha, Integral points on the homogenous Cone $z^{2}=2 x^{2}-7 y^{2}$, Diophantus J.Math., $1(2), 109-115,2012$.
[5] M.A. Gopalan, J. Kalinga Rani, on ternary quadratic equation $x^{2}+y^{2}=z^{2}+8$, impact J.sci tech; Vol(5), No. 1, 39-43, 2011.
[6] M.A. Gopalan, S. Vidhyalakshmi and G. Sumathi, Lattice points on the hyperboloid one sheet $4 z^{2}=2 x^{2}-7 y^{2}$, Diophantus J.math, 1(2), 109-115,2012.
[7] M.A.Gopalan, S. Vidhyalakshmi and K. Lakshmi, Integral points on the hyperboloid for two sheets $3 y^{2}=7 x^{2}-z^{2}+21$, Diophantus J.math, 1(2), 99-107, 2012.
[8] M.A. Gopalan and G. Sangeetha, Observation on $y^{2}=3 x^{2}-2 z^{2}$, Antarctica, J.math, 9(4), 359-362, 2012.
[9] M.A. Gopalan and G. Srividhya, Observation on $y^{2}=3 x^{2}-2 z^{2}$, Archimedes J.math, 2(1), 715,2012.
[10] M.A. Gopalan, and S. Vidhyalakshmi, on the ternary quadratic equation $x^{2}=\left(a^{2}-1\right)\left(y^{2}-z^{2}\right)$, >1, Bessel J.math., 2(2), 147-151, 2012.
[11] Manju Somanath, G. Sangeetha, and M.A. Gopalan, Observations on the ternary Quadratic equation $\mathrm{y}^{2}=3 \mathrm{x}^{2}+\mathrm{z}^{2}$, Bessel J.math., 2(2), 101-105,2012.
[12] G. Akila, M.A. Gopalan and S. Vidhyalakshmi, Integral solution of $43 x^{2}+y^{2}=z^{2}$, IJOER, Vol. 1, Issue 4, 70-74, 2013.
[13] T.Nancy, M.A. Gopalan, and S. Vidhyalakshmi, on Ternary Deiophantine equation $47 \mathrm{X}^{2}+\mathrm{Y}^{2}=\mathrm{Z}^{2}$, IJOER, Vol. I, Issue 4, 51-55, 2013.
[14] Anbuselvi R, Kannaki K, On ternary Quadratic Equation $11 x^{2}+3 y^{2}=14 z^{2}$ Volume 5, Issue 2, Feb 2016, Pg No. 65-68.
[15] Anbuselvi R, Kannaki K, On ternary Quadratic Equation $x^{2}+x y+y^{2}=12 z^{2}$ IJAR 2016: 2 (3); 533-535.
[16] Thangamalar K, On the ternary cubic diophantine equation $5 x^{2}-2 y^{2}=3 z^{2}$, IJREAM December 2018, Volume -4, Issue -6, ISSN No. 2454-9150, Impact Factor 5.646.

