

INTRODUCTION

The ternary quadratic Diophantine equations offer an indefinite field for research due to their range [1]. For a general review of various problems, one may refer [2-16]. The communication concerns with yet another interesting ternary quadratic equation $9(x^2+y^2)-17xy+x+y+1=39z^2$ representing a cone for determining its considerably many non-zero integral points. Also, a few interesting relations among the solutions are presented.

NOTATIONS

 $\begin{array}{l} T_{m,n}-Polygonal number of rank n with size m.\\ P_{n}^{m}-Pyramidal number of rank n with size m.\\ Ct_{m,n}-Centered Polygonal number of rank n with size m.\\ Gno_{n}-Gnomonic number of rank n.\\ Pr_{n}-Pronic number of rank n. \end{array}$

METHOD OF ANALYSIS

The Ternary quadratic Diophantine equation to be solved for its non-zero discrete integral solution is $9(x^2+y^2)-17xy+x+y+1=39z^2$ (1)

The replacement of linear transformation x=u+v, y=u-v--(2)In 1 leads to $(u+1)^2+35v^2=39z^2--(3)$ Special patterns of solutions of (1) exist below. Pattern I: Mark 39 as $39=(2+i\sqrt{35}) (2-i\sqrt{35})--(4)$

Imagine that $z=a^2+35b^2---(5)$

Where a, b are non - zero discrete integers.

Use (4) & (5) in (3) and applying the method of factorization, identify $(u+1)+i\sqrt{35}v=(2+i\sqrt{35})(a+i\sqrt{35}b)^{2}--(6)$

Equating the real and imaginary parts, we have $u=u(a,b)=2a^2-70ab-70b^2-1$ $v=v(a,b)=a^2+4ab-35b^2$

Substituting the above values of u and v in equation (2), the value of x and y are given by

$$x = x (a, b) = 3a^{2} - 66ab - 105b^{2} - 1$$

$$y = y (a, b) = a^{2} - 74ab - 35b^{2} - 1$$

$$z = z (a, b) = a^{2} + 35b^{2}$$
(7)

Thus equation (7) stand for a non-zero discrete integral solutions of (1) in two parameters.

A few interesting properties are given below:

1. $x(1,b)-3y(1,b)-78G_{nob}=80$

2. $y(a,1)+z(a,1)-T_{6,a} \equiv -1 \pmod{-73}$

3. z(1,b) is a nasty number

4. $x(1,b)+3z(1,b)-12T_{(13,b)}=31$

Pattern II: As an alternative of (4) we mark as

Mark 1 as $1 = (1 + i\sqrt{35})(1 - i\sqrt{35}) - ...(9)$

Imagine that $z=a^2+35b^2$ ---(10) equation (3) can be write as $(u+1)^2+35v^2=39z^{2*}1$ ---(11)

use (8) & (9) in (11) and applying the method of factorization define

 $(u+1)^2 + i\sqrt{35}v = \frac{1}{12}\left(4 + 2i\sqrt{35}\right)\left(1 + i\sqrt{35}\right)(a + i\sqrt{35}b)^2 \quad \dots \quad (12)$

Equating real and imaginary part, we have

$$u = u(a,b) = \frac{1}{4\pi} [-66a^2 + 2310b^2 + 420ab - 12]$$

 $v = v(a,b) = \frac{1}{12} [6a^2 - 210b^2 + 132ab]$ (13)

Change a by 12A and b by 12B in (10) and (13) $u = u(a,b) = -792A^2 + 27720B^2 + 5040AB - 1$

$$v = v(a, b) = 72A^2 - 2520B^2 + 584AB$$
 ---- (14)

$$z = z(a, b) = 144A^2 + 5040B^2$$

Substituting the values of u and v in equation (2), the value of x and y are given by $r(A, B) = -720A^{2} + 25200B^{2} + 562AAB = 1$

$$x(A,B) = -720A^{2} + 25200B^{2} + 5624AB - 1$$

$$y(A,B) = -864A^{2} + 30240B^{2} + 4456AB - 1$$

$$z(A,B) = 144A^{2} + 5040B^{2}$$
(15)

Thus the equation (15) represents non-zero discrete integral solutions of (1) in two parameters.

A few interesting properties are given below:

- 1. $x(A,1)-5z(A,1)+2812G_{noA}+5624=0$
- 2. $y(1,B)+6z(1,B)-60480Pro_{B}+28012_{GnoB}=28013$

1

- 3. z(A,A) is a perfect square number
- 4. $x(A,1)-y(A,1)-144T_{4A} \equiv -368 \pmod{1168}$

Pattern III:

Equation (3) can be write as $(u+1)^2 = 39z^2 - 35v^2 - --(16)$

Introducing the linear transformation Z=X+35T and V=X+39T ---(17) in (16) we get

$$X^{2} = 1365T^{2} + \left(\frac{u+1}{2}\right)^{2} \quad \text{---} (18)$$

Which is satisfied by
 $T(p,q) = 2pq$

$$u(p,q) = 2730p^2 - 2q^2 -$$

 $x(p,q) = 1365p^2 + q^2$

(19)

35

 $x = x(p,q) = 4095p^2 - q^2 + 78pq - 1$ $y = y(p,q) = 1365p^2 - 3q^2 - 78pq - 1$ (20)

 $z = z(p,q) = 1365p^2 + q^2 + 70pq$

Thus the equation (20) represent a non-zero discrete integral solutions of (1) in two parameters.

A few interesting properties are given below:

- 1. $x(P,1)-3y(P,1)\equiv 10 \pmod{312}$
- 2. $y(1,q)-z(1,q)+4T_{4,q}+74_{Gnoq}=75$
- x(a,a)+3z(a,a) is a nasty number 3
- 4. $x(P,1)-3z(P,1)+66_{Gnop}=71$

Note: In addition to (17) one may also consider the linear transformation Z=X-35T and V=X-39T following the method presented above different set of solutions are obtained.

CONCLUSION:

In this paper, we have obtainable three singular patterns of non-zero discrete integer solutions of the non-homogeneous cone given by $9(x^2+y^2)-17xy+x+y+1=39z^2$. To end, one may search for patterns of non-zero discrete integer solutions and their corresponding properties for other choices of ternary quadratic diophantine equation.

REFERENCES:

- L.E Dickson, History of theory of Numbers, Vol.2, Chelsea publishing company, New York 1952. [1]
- [2]
- [3]
- M.A. Gopalan, J. Stecha, Leak vol. (4), No.1, 23-32, 2010. M.A. Gopalan, and V. Pandichelvi, Integral solutions of ternary quadratic equation z(x-y)=4xy, Impact J. sci TSech; Vol(5), No.1, 01-06-2011. M.A. Gopalan, S. Vidhyalakshmi and A. Kavitha, Integral points on the homogenous Cone $z = 2x^2 7y^2$, Diophantus J.Math., 1(2), 109-115, 2012. M.A. Gopalan, J. Kalinga Rani, on ternary quadratic equation $x^2+y^2=z^2+8$, impact J.sci terk Vol(5), No.1, 20.4, 2011. [4] [5]
- tech; Vol(5), No. 1, 39-43, 2011. [6]
- R.A. Gopalan, S. Vidhyalakshmi and G. Sumathi, Lattice points on the hyperboloid one sheet $4z^2 = 2x^2 7y^2$. Diophantus J. math, 1(2), 109–115,2012. M.A. Gopalan, S. Vidhyalakshmi and K. Lakshmi, Integral points on the hyperboloid for two sheets $3y^2 7x^2 z^2 21$, Diophantus J. math, 1(2), 99–107, 2012. [7]
- [8]
- M.A. Gopalan and G. Sangeetha, Observation on y²=3x²-2z², Antarctica, J.math, 9(4), 359-362, 2012. M.A. Gopalan and G. Srividhya, Observation on y²=3x²-2z², Archimedes J.math, 2(1), 7-[9]
- 15 2012 [10] M.A. Gopalan, and S. Vidhyalakshmi, on the ternary quadratic equation x²=(a²-1)(y²-z²),
- [10] M.A. Gopalan, and S. Vidhyalaxsimi, on the ternary quadratic equation X (a 1)(y 2), >1, Bessel J.math., 2(2), 147-151, 2012.
 [11] Manju Somanath, G. Sangeetha, and M.A. Gopalan, Observations on the ternary Quadratic equation y²=3x²+z², Bessel J.math., 2(2),101-105,2012.
 [12] G. Akila, M.A. Gopalan and S. Vidhyalakshmi, Integral solution of 43x²+y²=z², IJOER, Vol. 1, Issue 4, 70-74, 2013.
 [13] There are M.A. Graphen and S. Vidhyalakshmi, Integral solution of 43x²+y²=z², IJOER, Vol. 1, Issue 4, 70-74, 2013.
- [13] T.Nancy, M.A. Gopalan, and S. Vidhyalakshmi, on Ternary Deiophantine equation 47X²+Y²=Z², IJOER, Vol. I, Issue 4, 51-55, 2013.
- [14] Anbuselvi R, Kannaki K, On ternary Quadratic Equation 11x²+3y²=14z² Volume 5, Issue 2, Feb 2016, Pg No. 65-68.
- Anbuselvi R, Kannaki K, On ternary Quadratic Equation x²+xy+y²=12z² IJAR 2016: 2 [15] (3): 533-535
- Thangamalar K, On the ternary cubic diophantine equation 5x²-2y²=3z², IJREAM [16] December 2018, Volume - 4, Issue - 6, ISSN No. 2454-9150, Impact Factor 5.646.