Original Research Paper

Ophthalmology

STUDY OF INCIDENCE AND PROGRESSION OF RETINOPATHY OF PREMATURITY IN PREMATURE INFANTS IN RELATION TO THE LEVEL OF HAEMOGLOBIN

Dr. K. R. Vijayabharathi

Department of Ophthalmology, KAPV Government Medical College, Trichy, Tamil Nadu. India

ABSTRACT Aim of the study: This study aims to correlate the relationship of retinopathy of prematurity (ROP) with anemia in premature infants with regard to incidence and progression of ROP. Materials and Methods: All high-risk infants from our institution and neighboring districts as selected by neonatologist were screened at Special newborn care unit every Thursday on regular basis, and this study includes infants screened at ROP clinic during January 2017—March 2017. Conclusion: In our study at ROP clinic, high-risk premature infants who were screened showed a significant prevalence of ROP in babies weighing <2.000 kg and with female preponderance. The role of anemia and other neonatal risk factors needs to be evaluated further in our ongoing study.

KEYWORDS: Anemia, high-risk premature infants, progression, retinopathy of prematurity

INTRODUCTION:

Retinopathy of Prematurity is a disease affecting the retinae of premature infants. ROP is unique in that the vascular disease is found only in infants with immature, incompletely vascularized retina hence its connection with premature birth.

Pathogenesis:

The mechanism of oxygen effects prints out that the initial changes in the developing vessels was believed to be an injury caused by higher concentration and of oxygen supplementation in premature infants with inadequate respiratory effort and poor oxygen saturation (SPO2)

Induced Hyperoxia caused down regulation of VEGF and death of endothelial cells suggesting that VEGF is an endothelial survival factor. In the time that follows the closure of these growing vessels the differentiating retina becomes increasingly ischaemic and hypoxic and VEGF is upregulated during the neovascularization.

Risk factors

In general prematurity, low birth weight, prolonged supplemental oxygen are established factors for the development of ROP.

Numerous other neonatal factors have been associated with ROP including Cyanosis apnoea, mechanical ventilation, Intraventricular haemorrhage, Seizures, septicemia, in-uterohypoxia, anaemia, and vitamin E deficiency.

Aim of the study

Hence a study was conducted in ROP Clinic to correlate the relationship of ROP with anaemia in Premature infants with regard to the incidence and progression of ROP.

Materials and methods

All high risk premature infants from our institute and neighbouring districts as selected by the neonatologist were screened at ROP Clinic on regular basis and this study includes infants evaluated during January 2017 to March 2017.

Indices included for this study are gestational age, chronological age, birth weight, gender, referral district, staging of ROP and Haemoglobin levels.

Infants were dilated with Tropicamide every 15 mts for three times and the fundus examination was carried out at Neonatal ICU.

Using Wire speculum after instillation of topical anesthetics, fundus examination was done using binocular indirect Ophthalmoscope and with scleral indentation.

All details were recorded in the ROP chart

An details were recorded in the KOT chart.							
Particulars	No.of respondents	Percentage					
Normal	55	76.4					
Abnormal	17	23.6					
Tota1	72.	100.0					

Descriptive Statistics

	n	Min.	Max.	Mean	S.D
Age	72	8	180	50.61	38.580
Ges.Age	72	23	40	30.76	4.224
Weight	72	.795	5.400	2.30396	1.147857
Hb	72	7.60	22.80	14.1806	2.79742

A total of 72 infants were screened in our study. Most of the infants were found to be between 30-60 days of birth (40.5%) and below 30 days were of 36.1%

Age

Particulars	No.of respondents	Percentage
Below 30days	26	36.1
31 to 60days	29	40.3
61 to 90days	7	9.7
91 to 120days	7	9.7
121 to 150days	1	1.4
151 to 180days	2	2.8
Total	72	100.0

Affected group were more of female gender population

Particulars	No.of respondents	Percentage
Male	28	38.9
Female	44	61.1
Total	72	100.0

There was no marked difference in respondents between less than 28 weeks of gestational age and above 28 weeks

Particulars	No.of respondents	Percentage
Below 30 weeks	38	52.8
31 to 40 weeks	34	47.2
Total	72	100.0

Most of affected infants were in 1-2 kg group(43.1%) (ie) 31 infants and 2.3 kgs (30.6%) 22 infants.

Particulars	No.of respondents	Percentage
Below 1kg	6	8.3
1 to 2kg	31	43.1
2 to 3kg	22	30.6
3 to 4kg	7	9.7
4 to 5kg	2	2.8
5kg & above	4	5.6
Total	72	100.0

The level of haemoglobin was not much variable in both normal and affected infants with statistical inference of 0.834>0.05 and hence was not significant.

T-Test

Stage	n	Mean	S.D	t	df	Statistical inference
Age						
Normal	55	54.98	41.722	1.754	70	.084>0.05
Abnormal	17	36.47	21.252			Not Significant

Ges.Age						
Normal	55	31.25	4.287	1.801	70	.076>0.05
Abnormal	17	29.18	3.695			Not Significant
Weight						
Normal			1.099045	2.388	70	.020<0.05
Abnormal	17	1.74118	1.153059			Significant
Hb						
Normal	55	14.1418	2.96034	-0.210	70	.834>0.05
Abnormal	17	14.3059	2.26425			Not Significant

Respondents in relation to age sex place of birth gestational age and birth weight

	No	rmal	Αŀ	normal	Tot	tal	Statistical inference	
	n	%	n	%	n	%		
Age								
Below 30days	19	34.5%	7	41.2%	26	36.1%	X2=3.599 Df=5	
31 to 60days	21	38.2%	8	47.1%	29	40.3%	0.609>0.05	
61 to 90days	5	9.1%	2	11.8%	7	9.7%	Not Significant	
91 to 120days	7	12.7%	0	.0%	7	9.7%		
121 to 150days	1	1.8%	0	.0%	1	1.4%		
151 to 180days	2	3.6%	0	.0%	2	2.8%		
Sex								
Male	25	45.5%	3	17.6%	28	38.9%	X2=4.225 Df=1	
Female	30	54.5%	14	82.4%	44	61.1%	0.040<0.05 Significant	
Place								
Tiruchirappalli	46	83.6%	13	76.5%	59	81.9%	X2=1.759 Df=3	
Pudukkottai	3	5.5%	2	11.8%	5	6.9%	0.624>0.05	
Perambalur	5	9.1%	1	5.9%	6	8.3%	Not Significant	
Karur	1	1.8%	1	5.9%	2	2.8%		
Ges.age								
Below 30days	26	47.3%	12	70.6%	38	52.8%	X2=2.833 Df=1	
31 to 40days	29	52.7%	5	29.4%	34	47.2%	0.092>0.05 Not Significant	
Type of cases								
New case				88.2%	45		X2=6.289 Df=1	
Old case	25	45.5%	2	11.8%	27	37.5%	0.012<0.05 Significant	
Weight								
Below 1kg	1	1.8%	5	29.4%	6	8.3%	X2=15.948 Df=5	
1 to 2kg	23	41.8%	8	47.1%	31	43.1%	0.007<0.05	
2 to 3kg	19	34.5%	3	17.6%	22	30.6%	Significant	
3 to 4kg	7	12.7%	0	.0%	7	9.7%		
4 to 5kg	2	3.6%	0	.0%	2	2.8%		
5kg & above	3	5.5%	1	5.9%	4	5.6%		
Total	55	100.0 %	17	100.0%	72	100.0%		
CONCLUSION	т							

CONCLUSION:

In our study at ROP Clinic all 72 high risk premature infants who were screened showed a higher prevalence of ROP in babies weighing less than 2 kg and with female preponderance. The role of anaemia and other neonatal risk factors in ROP needs to be evaluated further in our ongoing study.

REFERENCES

- Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E, et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinonathy of prematurity. Nat Med 1995; 1:1024-8.
- retinopathy of prematurity. Nat Med 1995;1:1024-8.

 2. Englert JA, Saunders RA, Purohit D, Hulsey TC, Ebeling M. The effect of anemia on retinopathy of prematurity in extremely low birth weight infants. J Perinatol 2001;21:21-6.
- Fierson WM; American Academy of Pediatrics Section on Ophthalmology; American Academy of Ophthalmology; American Association for Pediatric Ophthalmology and Strabismus; American Association of Certified Orthoptists. Screening examination of premature infants for retinopathy of prematurity. Pediatrics 2013;131:189-95.
 Fortes Filho JB, Eckert GU, Valiatti FB, Dos Santos PG, da Costa MC, Procianoy RS, et
- Fortes Filho JB, Eckert GU, Valiatti FB, Dos Santos PG, da Costa MC, Procianoy RS, et al. The influence of gestational age on the dynamic behavior of other risk factors associated with retinopathy of prematurity (ROP). Graefes Arch Clin Exp Ophthalmol 2010;248:893-900.
- Gibson DL, Sheps SB, Uh SH, Schechter MT, McCormick AQ. Retinopathy of prematurity-induced blindness: Birth weight-specific survival and the new epidemic. Pediatrics 1990;86:405-12.
- Pediatrics 1990;86:405-12.

 6. Gilbert C, Rahi J, Eckstein M, O'Sullivan J, Foster A. Retinopathy of prematurity in middle-income countries. Lancet 1997;350:12-4.
- 7. Gilbert C. Retinopathy of prematurity: A global perspective of the epidemics, population

- of babies at risk and implications for control. Early Hum Dev 2008;84:77-82. Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard AL, Liu JL, et al. Low IGF-I
- Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard AL, Liu JL, et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: Direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci U S A 2001;98:5804-8.
 Liu PM, Fang PC, Huang CB, Kou HK, Chung MY, Yang YH, et al. Risk factors of
- Liu PM, Fang PC, Huang CB, Kou HK, Chung MY, Yang YH, et al. Risk factors of retinopathy of prematurity in premature infants weighing less than 1600 g. Am J Perinatol 2005;22:115-20.
- Maheshwari R, Kumar H, Paul VK, Singh M, Deorari AK, Tiwari HK, et al. Incidence and risk factors of retinopathy of prematurity in a tertiary care newborn unit in new Delhi. Natl Med J India 1996;9:211-4.