Of APP

Ophthalmology

COMPARING RETINAL NERVE FIBER LAYER THICKNESS IN MYOPIA WITH CONTROLS IN A TERTIARY CARE CENTRE IN NORTH INDIA

Dr Surraya Ismail
Parray*MS, Department of Ophthalmology, SMHS hospital, Srinagar, J&K. *Corresponding
Author

Dr Junaid S Wani MS, Department of Ophthalmology, SMHS hospital, Srinagar, J&K.

ABSTRACT INTRODUCTION: To compare the peripapillary retinal nerve fiber layer (RNFL) thickness measured via optical coherence tomography (OCT) between different groups of myopia severity and controls.

METHODS: This was a prospective cross-sectional study. All subjects underwent a full ophthalmic examination, refraction, visual field analysis and A-scan biometry. Myopic patients were classified as low myopia (LM), moderate myopia (MM) and high myopia (HM). The control group consisted of emmetropic (EM) patients. A Zeiss Cirrus HD-OCT machine was used to measure the peripapillary RNFL thickness of both eyes of each subject. The mean peripapillary RNFL thickness between groups was compared using both analysis of variance and analysis of covariance.

RESULTS: A total of 322 eyes of 322 subjects were included in this study. Approximately two-thirds were female (n=204). The mean age was $30.68\pm10.6y$. There were 144 (44.7%) eyes with EM, 99 (30.8%) eyes with LM, 58 (18%) eyes with MM and 21(6.5%) eyes with HM. All groups of myopia severity had a thinner average RNFL than the EM group, but after controlling for gender, age, and axial eye length, only the HM group differed significantly from the EM group (P=0.017). Likewise, the superior, inferior and nasal RNFL was thinner in all myopia groups compared to controls, but after controlling for confounders, only the inferior quadrant RNFL was significantly thinner in the HM group, when compared to the EM group (P=0.017).

CONCLUSION: The average and inferior quadrant RNFL is thinner in highly myopic eyes compared to emmetropic eyes. Refractive status must be taken into consideration when interpreting the OCT of myopic patients, as RNFL thickness varies with the degree of myopia.

KEYWORDS: optical coherence tomography; retinal nerve fiber layer; myopia

INTRODUCTION

In the past decades the prevalence of myopia has been increasing, with nearly half of the world population predicted to be myopic by 2050[1-2]. It is very common condition in Asia, where the prevalence has been estimated to be as high as 90% in East Asia [3-4]. Other eye diseases are associated with myopia, of which glaucoma remains one of the pertinent [5-6]. The morphological appearance of the optic nerve head in myopia renders the clinical diagnosis and monitoring of glaucoma progression in myopic eyes challenging, especially as these eyes may have concomitant visual field defects mimicking those seen in glaucoma [7]. Optical coherence tomography (OCT) can aid in the diagnostic dilemma by measuring retinal nerve fiber layer (RNFL) thickness, which differs significantly between glaucoma patients and controls[8-11]. However, myopic patients may have RNFL abnormalities which may complicate this interpretation. Our study aimed to compare peripapillary RNFL thickness between different groups of myopia severity and controls using Zeiss Cirrus HD-OCT.

MATERIALS AND METHODS

This was a prospective cross-sectional study conducted in the Department of Ophthalmology in SMHS hospital, a tertiary hospital in Srinagar, Kashmir. The study was approved by the Ethical committee of the hospital. Inclusion criteria were adults aged 18 to 60 years of age with no ocular pathology. We excluded those with a history of previous ocular trauma or surgery. Those with a cup-disc ratio greater than 0.7, an intraocular pressure greater than 21 mm Hg, visual field abnormalities, a first degree family member with glaucoma were also excluded. All subjects underwent a full ophthalmic examination, including distance Snellen visual acuity, refraction, slit-lamp biomicroscopy of the anterior segment, assessment of intraocular pressure by Goldmann applanation tonometry and dilated fundus examination. Myopic patients were classified based on their spherical equivalent (SE).

The severity groups were as follows: low myopia (LM; SE greater than -0.5 D, up to -3.0 D), moderate myopia (MM; SE greater than -3.0 D, up to -6.0 D) and high myopia (HM; SE greater than -6.0 D)[12]. The control group was emmetropia (EM), defined as a SE from +0.5 D to -0.5 D. Other examinations included visual field (SITA fast 24-2 Humphrey Field Analyser II, Carl Zeiss Meditec, Germany) and Asscan biometry (PAC SCAN 300 A Sonomed Digital Biomedic Ruler). Cirrus HD-OCT (Carl Zeiss Meditec, Inc. Germany) was used to

measure the peripapillary RNFL thickness of both eyes of each subject. This was a spectral-domain OCT device with an acquisition rate of 27 000 A-scans per second. After the subject was properly seated, the iris was brought into view using the mouse-driven alignment system. The line scanning ophthalmoscopic image was focused, and the optic nerve head centered in the viewer. The software's automated built-in algorithms identified the center of the optic disc, and a circle measuring 3.46 mm in diameter was positioned automatically evenly around the disc center to generate average, quadrant and clock-hour peripapillary RNFL measurements. A satisfactory scan required optic disc centration, images in clear focus and signal strength of ≥6. Images with movement artifact or signal strength of less than 7 were repeated once, if the second scan was also unusable, the eye was excluded from the study. The peripapillary RNFL parameters evaluated in this study consisted of mean 360°, superior, inferior, nasal and temporal quadrant thickness. The mean peripapillary RNFL thickness between groups was compared using both analysis of variance (ANOVA) and analysis of covariance (ANCOVA) to control for potential confounders.

RESULTS

A total of 322 eyes of 322 subjects were included in this study. Approximately two-thirds were female (n=204). The mean age was $30.68\pm10.6y$. There were 144 (44.7%) eyes with EM, 99 (30.8%) eyes with LM, 58 (18%) eyes with MM and 21(6.5%) eyes with HM (Table 1).

Table 1	Age,	axial	length	and	360°	RNFL	thickness	in	EM,	LM,
MM and	l HM	grou	ps							

Variable	EM	LM	MM	HM
Age (y)	31.35±10.4	31.02±9.6	31.18±10.9	31.03±8.4
Axial length (mm)	23.08±0.78	23.69±0.74	25.03±0.82	26.22±1.14
Average RNFL thickness(µm)	100.6±9.8	98.56±8.44	94.87±8.87	89.64±9.26

EM: Emmetropia; LM: Low myopia; MM: Moderate myopia; HM: High myopia.

A significant inter-group difference for all RNFL parameters was observed (Table 2). Myopic groups had a thinner average RNFL than the EM group, and their RNFL was thinner in all quadrants except temporally.

Table 2 RNFL thickness and axial length in EM, LM, MM and HM groups

Variable	EM	LM (MM	HM	\$P
	(n=144)	n=99)	(n=58)	(n=21)	
360o average	100.6±9.8	98.56±8.	94.87±8.8	89.64±9.	< 0.001
RNFL thickness		44	7	26	
(µm)					
Superior	128.33±1	126.29±1	117.88±15	109.85±1	< 0.001
quadrant RNFL	6.89	5.84	.28	4.94	
thickness (µm)					
Inferior	133.78±1	128.51±1	121.03±15	109.66±1	< 0.001
quadrant RNFL	6.88	6.34	.24	5.02	
thickness (µm)					
Nasal quadrant	68.46±10.	66.83±9.	62.92±9.0	62.89±9.	< 0.001
RNFL thickness	42	72	4	68	
(μm)					
Temporal	70.22±9.5	71.67±11	75.87±14.	75.65±14	< 0.001
quadrant RNFL	6	.98	08	.79	
thickness (µm)					
Axial length	23.08±0.7	23.69±0.	25.03±0.8	26.22±1.	< 0.001
(mm)	8	74	2	14	

EM: Emmetropia; LM: Low myopia; MM: Moderate myopia; HM: High myopia. ^{\$}ANOVA was applied

The myopic groups had a thinner average RNFL than the emmetropic group, with a statistically significant difference observed only between the HM and the EM group, after controlling for age, gender and axial length of the eye (P=0.017; Table 3). The mean inferior quadrant RNFL was significantly thinner in the HM group compared to the EM group, after adjustment for above mentioned factors (P=0.017; Table 4). There were no statistically significant differences of RNFL thickness among groups in the superior, nasal and temporal quadrants, after adjustment for confounders.

Table 3: Comparison of average RNFL thickness between EM, LM, MM and HM groups

Refractive Error Groups	Adjusted Mean (95% CI)	1Adjusted Mean difference (95%CI)	^a P
EM/LM	99.02 (97.35, 100.70)/97.17 (95.30, 99.03)	1.85 (-1.00, 5.11)	0.450
EM/MM	99.02 (97.35, 100.70)/95.09 (92.45, 97.73)	3.93 (-0.34, 8.61)	0.088
EM/HM	99.02 (97.35, 100.70)/91.10 (86.41, 95.79)	7.92 (0.96, 15.28) 0.017	0.017
LM/MM	97.17 (95.30, 99.03)/95.09 (92.45, 97.73)	2.08 (-2.06, 6.22)	1.000
LM/HM	97.17 (95.30, 99.03)/91.10 (86.41, 95.79)	6.07 (-0.60, 12.73)	0.098
MM/HM	95.09 (92.45, 97.73)/91.10 (86.41, 95.79)	3.99 (-2.02, 9.99)	0.477

EM: Emmetropia; LM: Low myopia; MM: Moderate myopia; HM: High myopia; CI: Confidence interval. ¹ANCOVA was applied, ^aP<0.05 is statistically significant.

Table 4: Comparison of mean inferior quadrant RNFL thickness between EM, LM, MM and HM groups

Refractive	Adjusted mean (95%CI)	1Adjusted	"Р
error groups		mean difference	
		(95%CI)	
EM/LM	130.43 (127.77, 133.70)/126.15	3.98 (-1.12,	0.217
	(123.15, 129.75)	9.69)	
EM/MM	130.43 (127.77, 133.70)/123.83	6.60 (-1.01,	0.127
	(119.16, 128.50)	14.82)	
EM/HM	130.43 (127.77, 133.70)/116.42	14.01 (1.65,	0.017
	(108.13, 124.71)	26.97)	
LM/MM)	126.15 (123.15, 129.75)/123.53	2.62 (-4.70,	1.000
	(119.16, 128.50	9.94)	
LM/HM	126.15 (123.15, 129.75)/116.42	9.73 (-1.76,	0.148
	(108.13, 124.71)	21.82)	
MM/HM)	123.53 (119.16, 128.50)/116.42	7.11 (-3.22,	0.392
	(108.13, 124.71	18.04)	

EM: Emmetropia; LM: Low myopia; MM: Moderate myopia; HM: High myopia; CI: Confidence interval. ANCOVA was applied; ^aP<0.05 is statistically significant.

DISCUSSION

Researchers have been trying to identify risk factors for myopia[13-16] as well as the optimal management of the disease and its complications[17-19]. HM, especially, is associated with both maculopathy and glaucomatous optic neuropathy, rendering OCT an indispensable imaging modality in such patients[20-21]. Our study provides mean RNFL values of Zeiss Cirrus HD-OCT and demonstrates significant RNFL thickness differences between myopic patients and controls.

We observed that the mean RNFL thickness was significantly lower in highly myopic eyes compared to emmetropic eyes. This is in agreement with similar studies performed using RTVue-100 and Fourier domain OCT[22-23]. Although increasing axial length has been associated with RNFL thinning[24-25], we observed that the extent of this thinning was not statistically significant between the highly myopic group and other groups. Our findings are in contrast to those of Sezgin Akcay et al[26] and Kim et al[27], who observed that patients with HM have a thinner average RNFL than those with low and moderate myopia. Inter-group comparison of RNFL quadrant thickness revealed that the RNFL thinning seen in highly myopic eyes was not uniformly distributed; significant thinning was observed in the inferior quadrant RNFL of highly myopic eyes. However, our study failed to observe any significant inter-group differences in RNFL thickness of the superior and nasal quadrants. These findings are in inverse correlation to the two studies cited above[26-27], which observed that the RNFL was thicker in the LM group than in the moderate and/or HM groups for the superior, nasal and inferior quadrants.

The differences between our study and those cited may be due to the effect of confounders such as age[28-29], as multivariate analysis was not applied in the aforementioned studies. Reduced thickness of the middle to inner retina in myopia leads to retinal thinning, which has been correlated functionally to reduced spatial resolution[30]. This thinning has been explained by stretching of the ocular layers during eyeball elongation, as occurs in pathologic myopia[31]. Increased axial length has also been associated with narrowed retinal arterioles [32-33] and decreased peripapillary retinal flow perfusion. Whether these vascular changes precede or follow the RNFL thinning is still a matter of debate[34].

Strengths of our study include a relatively large sample size, adjustment for confounders and the elimination of inter-observer errors by using a single operator to perform refraction, ocular biometry and OCT of the RNFL. But unequal number of samples in each refractive error group, with the highly myopic group comprising the smallest proportion is the limitation of our study. In addition, we could have inadvertently introduced selection bias when we excluded subjects with abnormal visual fields and increased cup disc ratio. We did not adjust for magnification effect, which may also potentially affect the measured RNFL thickness[35]. Despite these limitations, our study clearly demonstrates that highly myopic eyes have a thinner RNFL than normal eyes. This thinning may be a risk factor for glaucoma development, as variations in the arrangement of optic nerve head fibers have been postulated to render myopic eyes more susceptible to glaucomatous damage[5,36].

CONCLUSIONS

While evaluating peripapillary RNFL thinning in myopic eyes, the clinician must bear in mind that the age-matched normogram provided by the software to guide RNFL thickness assessment may not be valid, as it does not contain algorithms to adjust for axial length and refractive error. Highly myopic eyes have thinner average and inferior quadrant RNFL compared to emmetropic eyes. Thus interpretation of RNFL thickness in highly myopic eyes should be performed with caution.

REFERENCES

- Foster PJ, Jiang Y. Epidemiology of myopia. Eye (Lond) 2014;28(2):202-208. Hopf S, Pfeiffer N. Epidemiology of myopia. Ophthalmologe 2017;114(1):20-23. Wu PC, Huang HM, Yu HJ, Fang PC, Chen CT. Epidemiology of Myopia. Asia Pac J 3.
- Ophthalmol (Phila) 2016;5(6):386-393. Rose KA, French AN, Morgan IG. Environmental factors and myopia: paradoxes and 4.
- cts for prevention. Asia Pac J Ophthalmol (Phila) 2016;5(6):403-410. Ma F, Dai J, Sun X. Progress in understanding the association between high myopia and 5.

- primary open-angle glaucoma, Clin Exp Ophthalmol 2014;42(2):190-197
- Shim SH, Sung KR, Kim JM, Kim HT, Jeong J, Kim CY, Lee MY, Park KH; Korean 6. Ophthalmological Society. The prevalence of open-angle glaucoma by age in myopia: the Korea National Health and Nutrition Examination Survey. Curr Eye Res 2016-42(1)-1-7
- Hsu CH, Chen RI, Lin SC. Myopia and glaucoma: sorting out the difference. Curr Opin 7 Ophthalmol 2015;26(2):90-95
- Fu L, Aspinall P, Bennett G, Magidson J, Tatham AJ. The influence of optical coherence 8. tomography measurements of retinal nerve fiber layer on decision-making in glaucoma diagnosis. Curr Eye Res 2017;42(4):575-582. Hua Z, Fang Q, Sha X, Yang R, Hong Z. Role of retinal nerve fiber layer thickness and
- 9. optic disk measurement by OCT on early diagnosis of glaucoma. Eye Sci 2015;30(1):7-12. Kotowski J, Wollstein G, Ishikawa H, Schuman JS. Imaging of the optic nerve and 10
- retinal nerve fiber layer: an essential part of glaucoma diagnosis and monitoring. Surv Ophthalmol 2014:59(4):458-467.
- Zangwill LM, Bowd C. Retinal nerve fiber layer analysis in the diagnosis of glaucoma. 11. Curr Opin Ophthalmol 2006;17(2):120-131. Cline D, Hofstetter HW, Griffin JR. Dictionary of Visual Science. 4th ed: Butterworth-
- 12 Heinemann; 1997.
- Cuellar-Partida G, Lu Y, Kho PF, Hewitt AW, Wichmann HE, Yazar S, Stambolian D, 13. Bailey-Wilson JE, Wojciechowski R, Wang JJ, Mitchell P, Mackey DA, MacGregor S Assessing the genetic predisposition of education on myopia: a mendelian randomization study. Genet Epidemiol 2016;40(1):66-72.
- Gong B, Qu C, Huang XF, Yé ZM, Zhang DD, Shi Y, Chen R, Liu YP, Shuai P. Genetic association of COL1A1 polymorphisms with high myopia in Asian population: a Meta-14 analysis. Int J Ophthalmol 2016;9(8):1187-1193. Guggenheim JA, Williams C; UK Biobank Eye and Vision Consortium. Childhood
- 15 febrile illness and the risk of myopia in UK Biobank participants. Eye (Lond) 2016:30(4):608-614.
- 16 Parssinen O, Kauppinen M. Associations of reading posture, gaze angle and reading
- distance with myopia and myopic progression. Acta Ophthalmol 2016;94(8):775-779. Davidson SL, O'Hara M, Wagner RS. Management of progressive myopia. J Pediatr 17.
- Dartuson SL, Orlaa W, Wagiler KS, Managenent of progressive myopia. J reutation Ophthalmol Strabismus 2016;53(3):134-136.
 Huang J, Wen D, Wang Q, et al. Efficacy comparison of 16 interventions for myopia control in children: a network Meta-analysis. Ophthalmology 2016;123(4):697-708.
 Wolffsohn JS, Calossi A, Cho P, et al. Global trends in myopia management attitudes 18.
- 19 and strategies in clinical practice. Cont Lens Anterior Eye 2016;39(2):106-116.
- Chen LW, Lan YW, Hsieh JW. The optic nerve head in primary openangle glaucoma eyes with high myopia: characteristics and association with visual field defects. J Glaucoma 20 2016:25(6):e569-e575.
- Ohno-Matsui K. Pathologic myopia. Asia Pac J Ophthalmol (Phila) 2016;5(6):415-423. 21 Kita Y, Kita R, Takeyama A, Tomita G, Goldberg I. Effect of high myopia on glaucoma 22 diagnostic parameters measured with optical coherence tomography. Clin Exp Ophthalmol 2014;42(8):722-728.
- Malakar M, Askari SN, Ashraf H, Waris A, Ahuja A, Asghar A. Optical coherence tomography assisted retinal nerve fibre layer thickness profile in high myopia. J Clin 23
- Diagn Res 2015;9(2):NCO1-3. Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, Lee AK, Leung 24 GY, Rao SK, Lam DS. Retinal nerve fiber layer measurements in myopia: a n optical coherence tomography study. Invest Ophthalmol Vis Sci 2006;47(12):5171-5176. Zhao Z, Jiang C. Effect of myopia on ganglion cell complex and peripapillary retinal
- 25 nerve fibre layer measurements: a Fourier-domain optical coherence tomography study of young Chinese persons. Clin Exp Ophthalmol 2013;41(6):561-566.
- Sezgin Akcay BI, Gunay BO, Kardes E, Unlu C, Ergin A. Evaluation of the ganglion cell complex and retinal nerve fiber layer in low, moderate, and high myopia: a study by 26 RTVue spectral domain optical coherence tomography. Semin Ophthalmol 2017.32(6).682-688
- Kim MJ, Lee EJ, Kim TW. Peripapillary retinal nerve fibre layer thickness profile in 27 subjects with myopia measured using the Stratus optical coherence tomography. Br J Ophthalmol 2010;94(1):115-120.
- Uchida H, Yamamoto T, Araie M, Tomita G, Shirakashi M, Yoshikawa K; HRT Study 28 Group. Topographic characteristics of the optic nerve head measured with scanning laser tomography in normal Japanese subjects. Jpn J Ophthalmol 2005;49(6):469-476.
- 29
- Ozdek SC, Onol M, Gürelik G, Hasanreisoglu B. Scanning laser polarimetry in normal subjects and patients with myopia. Br J Ophthalmol 2000;84(3):264-267. Wolsley CJ, Saunders KJ, Silvestri G, Anderson RS. Investigation of changes in the myopic retina using multifocal electroretinograms, optical coherence tomography and 30 peripheral resolution acuity. Vision Res 2008;48(14):1554-1561. Yanoff M, Fine BS. Ocular Pathology: A Text and Atlas. Philadelphia: Harper & Row
- 31. 1982.
- 32
- Gopinath B, Wang JJ, Kifley A, Tan AG, Wong TY, Mitchell P. The association between ocular biometry and retinal vascular caliber is comparable from early childhood to adolescence. Invest Ophthalmol Vis Sci 2013;54(2):1501-1508. Tai EL, Li LJ, Wan-Hazabbah WH, Wong TY, Shatriah I. Effect of axial eye length on retinal vessel parameters in 6 to 12-year-old Malay girls. PLoS One 2017;12(1):e0170014. 33
- Wang X, Kong X, Jiang C, Li M, Yu J, Sun X. Is the peripapillary retinal perfusion 34 related to myopia in healthy eyes? A prospective comparative study. BMJ Open 2016;6(3):e010791.
- 35 Bae SH, Kang SH, Feng CS, Park J, Jeong JH, Yi K. Influence of myopia on size of optic nerve head and retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography. Korean J Ophthalmol 2016;30(5):335-343.
- Cahane M, Bartov E. Axial length and scleral thickness effect on susceptibility to glaucomatous damage: a theoretical model implementing Leplace's law. Ophthalmic Res 1992;24(5): 280-284. 36