INTRODUCTION:

Pertrochanteric fractures are becoming increasingly common as our population ages. These fractures typically occur in elderly patients and often result in the end of the patient's functional independence. Conservative methods of treatment for pertrochanteric fractures have shown higher morbidity and complications rates. Rigid internal fixation and early mobilisation has become standard method of treatment for such fracture. A variety of treatment options have evolved like extra medullary implants (Fixed angle plates or D.H.S.) and intramedullary implants (F.P.N) for pertrochanteric fractures. There are numerous literature advocating for both the procedure citing their advantage of one over another. The present study was done with comparative evaluation of functional outcome of use of proximal femoral nail versus dynamic hip screw in the management of pertrochanteric fracture to determine whether there is advantage advantage of one method over other or not.

MATERIAL AND METHOD:

This prospective study was conducted in Netaji Subhas Chandra Bose Subharti Medical College from June 2017 to September 2019. Total 60 patients were included in this study in which 30 were included in PFN group “P” and 30 in DHS group “D”. Intra-operative parameters like duration of surgery, length of incision, c-arm exposure, blood loss were evaluated and post-operatively patient was followed for minimum of 6 months and evaluation was done by Harris hip score.

RESULTS:

PFN group had less blood loss, less length of incision, long duration of surgery, early union and fewer complication as compare to DHS group. Follow up of patients showed that Harris hip score at 24th week in PFN group was better than DHS group.

CONCLUSION:

The present study demonstrates PFN group had better function outcome as compare to DHS group.

KEYWORDS:

1. Intramedullary location of the junction of nail and lag screw makes the implant stronger at resisting the bending forces.
2. The reduced distance between the weight bearing axis and the implant resulting in shorter lever arm in intramedullary implant.
3. An intramedullary device bears the bending load which is transferred to the intramedullary nail and is resisted by its contact against the medullary canal.
4. The intramedullary hip screw is a more biological method of fixation.

There were many studies comparing the outcomes of the PFNA and DHS for Pertrochanteric fractures, but there was obvious inconsistency in terms of effects across these studies and the optimal management of Pertrochanteric fractures remained controversial. It has been suggested, without supporting clinical data, that the IMNs (intramedullary nails) are superior for unstable trochanteric fractures, reverse oblique fractures and sub trochanteric fractures. Controversy, therefore, continues regarding the optimum choice of implant for these unstable fractures. The early operative treatment of the pertrochanteric fractures is widely accepted practice and different sliding nail-plate systems are used in the treatment.

This study was performed to analyze comparative evaluation of functional outcome of proximal femoral nail versus dynamic hip screw in the management of pertrochanteric fractures.

MATERIAL AND METHOD:

We conducted hospital based prospective study in Netaji Subhas Chandra Bose Subharti Medical College from June 2017 to September 2019. Total 60 patients were included in our study in which 30 were included in PFN group “P” and 30 in DHS group “D”.

CRITERIA FOR INCLUSION AND EXCLUSION:

1. Adult patients above the age of 18 years with Pertrochanteric fractures (Boyd and Griffin Types I, II, III, IV)

The proximal femoral nail (PFN) introduced by the AO/ASIF group in 1998 has become prevalent in treating trochanteric fractures in recent year. Theoretically intramedullary sliding nail possesses certain advantages:

1. The implant itself act as a buttress against translation of the proximal fragment.

The implant itself act as a buttress against translation of the proximal fragment.
EXCLUSION CRITERIA
1. Fractures associated with poly trauma
2. Pre-existing femoral deformity preventing hip screw osteosynthesis or intra-medullary nailing
3. Patients with pathological fractures
4. Patients with Open trochanteric fractures.
5. Comorbidities that preclude surgical treatment

PRE-OPERATIVE PREPARATION
The cases selected were investigated for pre anesthetic fitness and X-ray (AP view of both hip and lateral view of involved hip) and clinical records were maintained. Intravenous prophylactic antibiotic was given an hour before surgery.

AFTER TREATMENT:
Postoperatively, for both groups same antibiotics protocol was followed. Analgesics were given as per patient's requirement. Blood transfusion was given depending on the requirement. Sutures removed on 14th postoperative day.

In unstable Boyd and Griffin (type II, III, IV) fracture patterns weight bearing was delayed 3-4 weeks and in rest of the patients were encouraged for partial weight bearing with walker support depending on the pain tolerability.

FOLLOW UP:
Patients were followed up at an interval of 6 weeks, 12 weeks and 24 weeks. At every visit patient was assessed clinically with Harris Hip scoring system.

X-ray both hip with both thigh AP view and involved hip and thigh lateral view was done to assess fracture union and implant bone interaction.

FUNCTIONAL RESULTS:
Assessed based following hip scoring system adopted.

RESULT AND OBSERVATION
In our study during a period from June 2017 to September 2019 a total number of 60 patients were included as per inclusion criteria and underwent surgical fixation.

The results of study was analyzed and observation of this study are as follow:

1. Age: In PFN group 16 (53.3%) patient were between 61-80 years age group followed by 11(36.7%) patients were between 41-60 years age group and 3 (10.0%) patient were between 21-40 years age group and in DHS group 12 (40.0%) patients were in age group between 41-60 years age group and 11 (36.7%) patients were between 61-80 year age group.

2. Gender: In this study the PFN group had 20 (66.6%) patients that were male and 10 (33.4%) patients were female while in DHS group 12 (40%) patient were male while 18 (60%) patients were female.

3. Mode of Injury: In this study 27 (90.0%) patients of PFN group and 28 (93.3%) patients of DHS group sustained fracture due to low energy trauma while 3 (10.0%) patients of PFN group and 2 (6.7%) patients of DHS group had sustained fracture due to high energy trauma.

4. Side of fracture: In this study 14 patients of PFN and DHS group were right sided while 16 patients of PFN and DHS group were right sided.

5. Type of Fracture: PFN group had 25 (83.3%) patient in type II Boyd & Griffin classification, 4 (13.3%) patients in type-2 Boyd & Griffin and 1 patient in Boyd & Griffin. DHS group had 23 (76.7%) patients in type-2 Boyd & Griffin and 7 patients belongs to type-1 Boyd & Griffin classification.

Table:-1 Age distributions of studied patients

<table>
<thead>
<tr>
<th>Age (in years)</th>
<th>PFN</th>
<th>DHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-40</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>41-60</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>61-80</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

Table No.3 shows the stability status of the studied patients and in group DHS majority of patients were stable 27 (90.0%) while that of PFN group 20 (66.7%) were stable and the association was statistically significant (P=0.028)

6. Complications: In DHS group had 2 patient had screw cut out, 2 patient had surgical site infection, 4 patients had valgus malunion and 1 patient had varus effect. In PFN group 1 patients had surgical site infection while 1 patient has valgus malunion and 1 and Z-effect.

Table No.4 shows the distribution of patients in both the studied group on the basis of complications and PFN group showed no complications in 93.4% patients while 73.4% were having no complications in DHS group and 2 patient in DHS group had screw cutout while 1 patient in PFN group had Z-effect while 4 patient in DHS group had mal-union while 1 patient in PFN group had mal-union this association was insigniﬁcant (P=0.395)

7. Blood loss: Patients in PFN group had mean blood loss of 123.33 ml while in DHS group had 260.67 ml blood loss.
8. Time for union: PFN group had mean time period of union 11.73 weeks while DHS group had mean time of union 12.33 weeks.

Table No.5 Time period of union in weeks and Blood Loss

<table>
<thead>
<tr>
<th>Group Statistics</th>
<th>Group</th>
<th>Number</th>
<th>Mean ± SD</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood loss (ml)</td>
<td>PFN</td>
<td>30</td>
<td>123.33±36.984</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>DHS</td>
<td>30</td>
<td>260.67±75.655</td>
<td>0.002</td>
</tr>
<tr>
<td>Time for union</td>
<td>PFN</td>
<td>30</td>
<td>11.73±1.388</td>
<td>0.016</td>
</tr>
</tbody>
</table>

9. In this study 25 of Boyd & Griffin type-II in PFN group and 23 patients of DHS group had union while in Boyd & Griffin type-1 patients of PFN group and 7 patients of DHS group had union.

Table No.2 Distribution of patient according to Boyd and Griffin classification

<table>
<thead>
<tr>
<th>Boyd & Griffin Classification</th>
<th>PFN</th>
<th>DHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-1</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Type-2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Type-3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Table No.2 Distribution of patient according to Boyd and Griffin classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>PFN</th>
<th>DHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-1</td>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>Type-2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Type-3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
In the present study the majority of patients were having left side injury (86.7%) and the association was significant (p=0.161).

In the present study the majority of patients were having left side injury in DHS group 33% fractures were unstable. KVD 41.7% patients operated by DHS were unstable fractures and of PFN group had 29 (96.67%) patient with unstable fracture pattern. In DHS group of 23 (76.66%) patients had unstable fracture while that in DHS group followed by type-1 Boyd and Griffin classification with 41.7% in PFN group and 38.3% classification was performed and the 80.0% of patients were in type-2 Boyd and Griffin classification and 80.0% of patients were in type-2 Boyd and Griffin classification with 41.7% in PFN group and 38.3% in DHS group followed by type-1 Boyd and Griffin classification (13.3%) and the association was statistically significant (p=0.014).

In the present study the majority of patients were having left side injury and the functional outcome using Harris hip score was found to be more in PFN group as compared to DHS group. The smaller incision in the PFN group meant that there was less surgical site infection and 1 patient had varus angulation. 1 patient in PFN group had valgus malunion and 4 patients in DHS group had varus malunion.

In this study the blood loss was significantly more in DHS group as compared to PFN group and. Similar result was seen in study of Naushad Hussain & Sanil Kamat reported that intra-operative blood loss was significantly more in DHS group. Considering the fact that additional surgical exposure can theoretically prolong the operative time and thus more blood loss in DHS group as compared to PFN group. The length of the incision in the DHS group ranged from 14 cm to 18 cm with a mean of 16 cm as compared to a mean incision of 6 cm in the PFN group. The smaller incision in the PFN group meant that there was less intraoperative blood loss.

DISCUSSION

Pertrochanteric fractures are one of the commonest injuries sustained predominantly in elderly patients due to trivial fall and in younger individuals due to high energy trauma. The type of implant used has an important influence on complications of fixation. Sliding devices like the Dynamic Hip Screw (DHS) and Intramedullary devices like the proximal femoral nail (PFN) have their own advantages & disadvantages and various meta-analysis conducted so far have come out with conflicting results regarding superiority of PFN over DHS. The present study “Comparative Evaluation of Functional Outcome of Use of Proximal Femoral Nail versus Dynamic Hip Screw in the Management of Pertrochanteric Fractures” is a prospective controlled study including 60 patients with Pertrochanteric fractures out of which 30 were treated with DHS and 30 with PFN.

The mean age of the PFN group was 60.23±13.01 years while that of DHS group was 57.75±19.07 years and the majority of patients in this study were in age group between 61-80 years (45.0%) followed by age group between 41-60 years (38.3%). This study was comparable with Naushad Hussain & Sanil Kamat reported that intra-operative blood loss was significantly more in DHS group. Considering the fact that additional surgical exposure can theoretically prolong the operative time and thus more blood loss in DHS group as compared to PFN group. The length of the incision in the DHS group ranged from 14 cm to 18 cm with a mean of 16 cm as compared to a mean incision of 6 cm in the PFN group. The smaller incision in the PFN group meant that there was less intraoperative blood loss.

In this study the blood loss was significantly more in DHS group as compared to PFN group and. Similar result was seen in study of Naushad Hussain & Sanil Kamat reported that intra-operative blood loss was significantly more in DHS group. Considering the fact that additional surgical exposure can theoretically prolong the operative time and thus more blood loss in DHS group as compared to PFN group. The length of the incision in the DHS group ranged from 14 cm to 18 cm with a mean of 16 cm as compared to a mean incision of 6 cm in the PFN group. The smaller incision in the PFN group meant that there was less intraoperative blood loss.

In this study the distribution of patients on the basis of union of fractures, in the PFN group we had union in 96.7% patients while that in DHS group union was 86.7% patients and Shivanna UM et al reported that union in 80% of the patients in the DHS group while there was union in all patient of PFN group. Sadowski C et al that seven of the 20 patients who had been treated with the DHS experienced implant failure and/or nonunion, but in comparison to this, only one fracture of 20 treated with PFN had nonunion.

In the present study 1 patient of PFN group had complications in the form of surgical site infection and one had complication of Z-effect whereas 2 patients of the DHS group had complications in the form of surgical site infection and 1 patient had varus angulation. 1 patient in PFN group had valgus malunion and 4 patients in DHS group had varus malunion.

And time of union in DHS group was 12.33 weeks which is more than PFN group (11.33) this can be due to early weight bearing PFN group patient. According to Shivanna UM et al all the fracture united at a mean of 12 weeks in both DHS which was more or less similar to our study. Kalaiah K and Koshy JA also reported that complications are very few in PFN group as compared to DHS group. Shivanna UM et al in their study found three patients (20 per cent) in the DHS group had a malunion whereas there was no malunion reported in the PFN group with all the fractures unioning with less than ten degrees of varus angulation. Sinha Uand Ishtiaque S reported the contrasting result than the present study as they said that the presence of complications are significantly more in PFN Group (45.0%) compared to DHS Group (10.0%) this difference in results may be attributed to familiarity of the operating surgeon with procedure of surgery.

In this study the blood loss was significantly more in DHS group as compared to PFN group and. Similar result was seen in study of Naushad Hussain & Sanil Kamat reported that intra-operative blood loss was significantly more in DHS group. Considering the fact that additional surgical exposure can theoretically prolong the operative time and thus more blood loss in DHS group as compared to PFN group. The length of the incision in the DHS group ranged from 14 cm to 18 cm with a mean of 16 cm as compared to a mean incision of 6 cm in the PFN group. The smaller incision in the PFN group meant that there was less intraoperative blood loss.

Functional evaluation of studied patient on basis of Harris hip score was done at 6th 12th and 24th week such that at 6th week Harris hip score in PFN group was (62.10) and DHS group was (58.17) which was almost similar and Harris’s hip score was also similar at 12th week in PFN group (79.17) and DHS group (76.03) but Harris hip score at 24th weeks in PFN group (89.53) was significantly more than than DHS group (81.43). Kalaiah K and Koshy JA reported similar results as in our study at 1st month in Proximal Femoral Nail group, mean Harris Hip Score was 46.9±8.1 and in Dynamic Hip Screw group was 36.4±5.6. This difference in mean Harris Hip Score at 1st followup between two groups was statistically significant. At 2nd follow up in Proximal Femoral Nail group, mean Harris Hip Score was 66.7±6.5 and in Dynamic Hip Screw group was 63.4±9.8. At 6th month in Proximal Femoral Nail group, mean Harris Hip Score was 92.1±4.0 and in Dynamic Hip Screw group was 87.5±7.6.

In this study the majority of patients were having left side injury (53.3%) followed by right side (46.7%). Shivanna UM et al reported injuries to the left hip and right hip are equal. Sinha U and Ishtiaque S reported that left (60.0%) side is more frequently affected than right side (40.0%) similar results were attributed due to right hand while falling.

In this study the distribution of patients on the basis of union of fractures, in the PFN group we had union in 96.7% patients while that in DHS group union was 86.7% patients and Shivanna UM et al reported that union in 80% of the patients in the DHS group while there was union in all patient of PFN group. Sadowski C et al that seven of the 20 patients who had been treated with the DHS experienced implant failure and/or nonunion, but in comparison to this, only one fracture of 20 treated with PFN had nonunion.

In this study the blood loss was significantly more in DHS group as compared to PFN group and. Similar result was seen in study of Naushad Hussain & Sanil Kamat reported that intra-operative blood loss was significantly more in DHS group. Considering the fact that additional surgical exposure can theoretically prolong the operative time and thus more blood loss in DHS group as compared to PFN group. The length of the incision in the DHS group ranged from 14 cm to 18 cm with a mean of 16 cm as compared to a mean incision of 6 cm in the PFN group. The smaller incision in the PFN group meant that there was less intraoperative blood loss.

In this study the blood loss was significantly more in DHS group as compared to PFN group and. Similar result was seen in study of Naushad Hussain & Sanil Kamat reported that intra-operative blood loss was significantly more in DHS group. Considering the fact that additional surgical exposure can theoretically prolong the operative time and thus more blood loss in DHS group as compared to PFN group. The length of the incision in the DHS group ranged from 14 cm to 18 cm with a mean of 16 cm as compared to a mean incision of 6 cm in the PFN group. The smaller incision in the PFN group meant that there was less intraoperative blood loss.

In this study the blood loss was significantly more in DHS group as compared to PFN group and. Similar result was seen in study of Naushad Hussain & Sanil Kamat reported that intra-operative blood loss was significantly more in DHS group. Considering the fact that additional surgical exposure can theoretically prolong the operative time and thus more blood loss in DHS group as compared to PFN group. The length of the incision in the DHS group ranged from 14 cm to 18 cm with a mean of 16 cm as compared to a mean incision of 6 cm in the PFN group. The smaller incision in the PFN group meant that there was less intraoperative blood loss.

In this study the blood loss was significantly more in DHS group as compared to PFN group and. Similar result was seen in study of Naushad Hussain & Sanil Kamat reported that intra-operative blood loss was significantly more in DHS group. Considering the fact that additional surgical exposure can theoretically prolong the operative time and thus more blood loss in DHS group as compared to PFN group. The length of the incision in the DHS group ranged from 14 cm to 18 cm with a mean of 16 cm as compared to a mean incision of 6 cm in the PFN group. The smaller incision in the PFN group meant that there was less intraoperative blood loss.
was drawn from this study.

Outcome use of Proximal Femoral Nail versus Dynamic Hip Screw in

study was performed to analyze comparative Evaluation of functional

often result in the end of the patient's functional independence. This

population ages. These fractures typically occur in elderly patients and

Peritrochanteric fractures are becoming increasingly common as our

CONCLUSION

The PFN group in our study performed much better in view of union

rates, complications, blood transfixion & functional outcome based on

Harris hip score than the DHS group. Our conclusion from the two

study supported the use of PFN for unstable and complex per-

trochanteric fracture femur with lesser failure rates, lesser blood loss,

less shortening, early union & better functional outcome. However,

during implantation of PFN a more precise technical performance is

required for better outcomes

REFERENCES

to an intramedullary nail?: a randomized, prospective study of 206 patients comparing

1978;60:300-6.

3. Bridle SH, Patel AD, Bircher M, Calvert PT. Fixation of intertrochanteric fractures

of the femur; A randomized prospective comparison of the gamma nail and the

4. Radford P, Needham M, Webb JK. A prospective randomised comparison of the

5. Banan H, Al-Sabti A, Jimulia T, Hart AJ. The treatment of unstable, extra-capsular
hipfractures with the AO/ASIF proximal femoral nail (PFN)–our first 60 cases. Injury.

8. Xu YZ, Geng DC, Mao H.Q., Zhu X.S., Yang H.L. A comparison of the proximal

femoral nail antitrotation device and dynamic hip screw in the treatment of unstable

peretrochanteric fracture J Int Med Res 2010;38:1266-1275

9. Garg B., Manimuthu K., Kumar V., Mallhotra R., Kowal P.P. Outcome of short proximal

femoral nail antitrotation and dynamic hip screw for fixation of unstable trochanteric

fractures. A randomised prospective comparative trial Hip Int 2011;21:531-536

10. Shivanna UM, Radrappa GH. “A Comparative Study of Functional Outcome between

Dynamic Hip Screw and Proximal Femoral Nails Nailed Surgical Management of Per-

trochanteric Fractures”. Journal of Evolution of Medical and Dental Sciences

2015;Vol.4:42.7489-7498.

11. J Zou, Y Xu And H Yang. A Comparison of Proximal Femoral Nail Antitrotation and

Dynamic Hip Screw Devices in Trochanteric Fractures. The Journal of International

Medical Research. 2009;37:1057-1064

12. Ahmed IH, Basooni HAM, Mohamady EM, Mostafa MA. A comparison study of

proximal femoral nail and dynamic hip screw devices in unstable trochanteric fractures.

Imasha Medical Journal 2018;35:413–418

13. Ravi kumar V and Rashid MP. A comparative study of short proximal femoral nail

and dynamic hip screw in treatment of intertrochanteric fractures. International Journal

of Orthopaedics-Sciences 2018;4(1):878-885

14. KVD Naidu. A surgical management of per trochanteric fractures of femur by dynamic

hip screw and proximal femoral nail. International Journal of Orthopaedics-Sciences

2018;4(1):388-391

reverse oblique and transverse intertrochanteric fractures with use of an intramedullary

2002;84(5):372–381.

versus Dynamic Hip Screw Fixation for Unstable and Complex Intertrochanteric

Fractures of the Femur J Cont Med A Dent May-August 2017 Volume 5 Issue 2

17. Sinha U and Ishtiaque S. A Randomized Comparative Study On Functional Outcome Of

Pertrochanteric Femoral Fractures Treated With A Dynamic Hip Screw Or A Proximal

hip screw in the management of intertrochanteric fractures. International Journal of

Orthopaedics-Sciences 2018;4(2):571-583