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( ABSTRACT ) Nowadays, graph representation learning has aroused a lot of research interest, which aims to learn the latent low

dimensional representations of graph nodes, while preserving the graph structure. In many examples distances are
equivalent to a snow flake of the natural distance on space. Based on the local smooth assumption, some existing methods have achieved
significant success. Diffusion in narrow tubes processes with fast transmutations and convergence to a | diffusion process on a graph. To alleviate
this issue propose a graph Diffusion Network that can dynamically preserve local and global consistency of graph.
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INTRODUCTION

In graph theory the number of lines meeting at a vertex, i.e., incident to
that vertex, is called the vertex degree; graphs whose vertex degrees
are all equal are called regular graphs. A different approach was
initiated by H. Wiener in 1947 [1-9] with topological indices (TI’s).
Theses TI’s are numbers associated with chemical structures via their
hydrogen-depleted graphs G. For hydrocarbons, the wiener index W is
the sum of the number of bonds between all pairs of vertices in G. If one
defines the (topological) distance between two vertices of a graph as
the number of bonds between along the shortest path between these
two vertices, then W is the sum of all distances in graph G. One can
associate with any graph on n vertices several matrices: the adjacency
matrix A(G) is a square, symmetrical, nxn matrix with entries o; =1 for
adjacent (directly bonded) vertices i and j and zero otherwise; the
distance matrix D(G) is also a square nxn matrix with entries d, =0 on
the main diagonal and d; =1 for adjacent vertices i and j as in A, but all
other entries are integers bigger than 1 and represent the topological
distance between vertices i and j. The sums over rows i or columns i for
A(G) indicate the vertex degrees v, ; the sums over rows i or columns i
for D(G) indicate another graph invariant for each vertex (invariant
from the arbitrary vertex labeling i€{0,1, .. n}), called distance sums_i. It
is easy to see that W= 3%/, Graph representation learning aims to
represent each node in a graph as a low —dimensional vector that could
facilitate tasks such as node . The structural analysis is an important
problem motivating many studies of real — world networks. For
instance, the efficient partitioning of a transport network is one of the
most effective logistics optimization tools and the biggest opportunity
to significantly reduce transportation costs. The structural analysis is
also of importance when dealing with extremely large graphs, when we
need to cluster the vertices into logical components for storage (to
improve virtual memory performance) or for drawing purposes (to
collapse dense subgraphs into single nodes in order to reduce
cluttering). Finally, the structural analysis is important for accessing
large databases. In the present chapter, we apply the methods related to
random walks for analyzing of urban structures, evolution of
languages, and musical compositions. An electrical network is
considered as an interconnection of resistors. We demonstrate that
random walks defined on connected undirected graphs have a
profound connection to electric resistor networks (Doyle and Snell
1984; Tetali 1991; Chandra et al. 1996; Bollobas 1998)[11-15]. In the
present chapter, we discuss the effective resistance of electrical
networks, the relation between the shortest path (geodesic) distance
and the effective resistance distance, Kirchhoff and Wiener indexes of
agraph.

Fixed point theory is an important area of functional analysis. This
chapter deals with the survey of literature, related to theory of fixed
point theorems. Fixed point theory has fascinated thousands of
researcher sincel922 with the celebrated Banach’s fixed point
theorem. There exists vast literature on this topic and it is a very active
field of research at present. A self map T of a metric space X is said have
a fixed pointx if Tx=x. Theorems concerning the existence and
properties of fixed points are known as fixed point theorems. Such

theorems are very important tools for proving the existence and
uniqueness of the solutions to various mathematical models
representing phenomena arising in different fields, such as steady state
temperature distribution, chemical equation, economic theories and
flow of fluids. They are also used to study the problems of optimal
control related to these systems.

A finite connected undirected graph G(V,[E) can be seen as a discrete
time dynamical system possessing a finite number of states (nodes)
(Prisner 1995). The behavior of such a dynamical system can be
studied by means of a transfer operator which describes the time
evolution of distributions in phase space. The transfer operator can be
represented by a stochastic matrix determining a discrete time random
walk on the graph in which a walker picks at each node between the
various available edges with equal probability[16-22]. An obvious
benefit of the approach based on random walks to graph theory is that
the relations between individual nodes and subgraphs acquire a precise
quantitative probabilistic description that enables us to attack applied
problems which could not even be started otherwise.

2. Related works
In the following, we will mainly provide a brief review on some related
works.

2.1. Definition
Expected number of fixed points:

1 ai(o
We have C, = Ezﬂfsn x; 1@
Then we defined C(t) = Yo t"C,
:ez‘y’&ox.',—'

This has alot of information in it.

2.2. Example

Suppose C(o) is the number of cycle of ¢.Then,

C(0)=Li, ai(0)

Setting all x; = x we have

1
Cn(x) = ;ZU xg(ﬂ)

_ 1
C(1t) =G

=270 () oY

=Z,%x(x+1)...(x+j—1)

Then
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Since ), i% is the power series expansion for —log(1 — t)

Therefore, C, = %x(xﬂ)...()ﬁn—l)

xX+1, 2+x. n—1+x.

=X ()

=E(x") = wE!
Here S, denotes the sum, not the symmetric group. Here

P(xi=0):i_Tl and P(x;=1)=

E(x*r) = Xiox! P(xy = )
E(f(sp) = ZfGIP(Sn =)
We took f(j)=x/

S0, AV(S,) = 1+ 4+~ ~ logn
VAR(Sp)=Zip=1 7 (1 = D~logn

C(o)-logn
<] - o
The coefficient of x; is the number of permutations with j cycles.

These happen to be called sterling numbers of the first kind.
2.3. Question
Who cares about all this stuff with fixed points?

There was a game played where someone took two decks of cards
up to n. People play this game and you get a dollar if the same
number comes up. The question is a question of the number of fixed
points Monmort in 1708 proved the number of fixed points has a
poission distribution as we proved last time. Note that we may as
well call the cards on the first deck 1, 2...n. So the number of

matches is just the number of fixed points in a random permutation.
We also have a metric,
D (m, o)=#{i:w (i) # o (i)}

See, Diaconis, Gorolnick and Mulman on fixed points of
permutations for a classification of possible fixed points of transitive

primitive actions of the symmetric group.
2.4. Definition
The Cayley distance between two permutations

d.(o,m) =

minimum number of transpostions needed to express mo ™t

ie., this is the distance in the cayley graph where the vertices are
permutations and the edges join two elements differing by a

permutations.

2.5 Remarks
The above two distance measures are the only two biinvariant
distances that persi knows of.

2.6. Definition

Graph diffusion, which is equivalent to linear weighting for nodes
by large-scale random walk on graph. However, Graph Diffusion
focuses on node-level transformations rather than content-level
transformations. To reveal the relationship between node features,
we consider looking for a function f(A)=0(AC +
x)to non linearly map A from the input space to the
representation space, where A=A, is original node features and C€
R is the transformation matrix. Combined with Graph diffusion,
single diffusion can be expressed as follows:

f(B) =0(BC +x)
=0((I — 85)7AC + x).

2.7. Diffusion

A particular important issue in harmonic analysis is to connect the
smoothness of a function with the speed of convergence of its
diffused version to itself, in the limit as time goes to zero. In order
to consider the smoothness of diffusing functions in more general
settings, a distance defined in terms of the diffusion itself seems

particularly appropriate.

Defining diffusion distances is of interest in applications as well. As
discussed in [3, 7, 12, 13, 25], dimensionality reduction of data and
the concomitant issue of finding structures in data are highly
important objectives in the fields of information theory, statistics,
machine learning, sampling theory, etc. It is often useful to organize
the given data as nodes in a weighted graph, where the weights
reflect local interaction between data points. Random walks, or
diffusion, on graphs may then help understand the interactions
among the data points at increasing distance scales. To even
consider different distance scales, it is necessary to define an

appropriate diffusion distance on the constructed data graph.

2.8. Properties
The symmetric diffusion operator T; has the following
properties of a symmetric diffusion semi group:
()T is the identity
(i)Tyys =Ty o T, forall s, t= 0
GDIT (PN, < Ifll,. for 1S p < o0
(iv)T; is a self ad joint operator on L,(X)
W T(f) > finlyast - 0F
Vi) T, (f) 2 0iff= 0
vi)T,(1) =1
See Stein’s book, in which the author derives various harmonic
analysis results for symmetric diffusion semi groups without

explicitly using kernels.

2.9. Definition
We consider a general symmetric diffusion semigroup {T;f};s0 on a

topological space X with a positive o-finite measure (i.e., X is a
countable union of measurable sets with finite measure), given, for

t> 0, by an integral kernel operator:Tyf (x) £ fx p:(x, V) f(y)dy .
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Coifman and Leeb introduce a family of multiscale diffusion
distances and establish quantitative results about the equivalence of
a bounded function f'being Lipschitz, and the rate of convergence of
T.fto 1, as t— 0% (we are discussing some of their results using a
continuous time for ¢ convenience; most of Coifman’s and Leeb’s
derivations are done for dyadically discretized times. Moreover,
most of the authors’ results are in fact established without the
assumption of symmetry and under the weaker condition than
positivity of the kernel, namely, an appropriate L,integrability
statement. To prove the implication that Lipschitz implies an
appropriate estimate on the rate of convergence, Coifman and Leeb

make a quantitative assumption about the decay of
" fylpe(xy)ld(x,y)dy ,as t > 0*
M

for their distances d, namely, that
"L dpe(x, yld(x y)dy < e
@

for some a > 0. Coifman and Leeb also establish that (2) above, in
the case of positive diffusion kernels, is in fact equivalent to their
conclusion about the rate of convergence of T, f to f, as t— 0%, for
a Lipschitz function f. Additionally, Coifman and Leeb show that, in
some of the settings they consider (with decay and continuity
assumptions on the diffusion kernels relative to an intrinsic metric),
their multi scale diffusion distance is equivalent to
(localized)D (x,y)* where D(x,y) is the intrinsic metric of the
underlying space and « is a positive number strictly less than 1. The

authors emphasize that @ cannot be taken to equal 1.

We introduce a new family of diffusion distances generated by the
diffusion semigroup {T;f};so - We provide several reasons as to
why we think our definition is natural; in particular, we show that,
for a convolution diffusion kernel on R™ , we achieve a = 1lin the
discussion just above; i.e., we can recover (local) Euclidean distance

to the “full” power 1.

The implication established in [27, 28] that smoothness of f implies
control of the speed of convergence of T;f to f seems to us to be a
more notable result than the converse (which the authors establish
without assuming the decay of (1)). However, if f'is Lipschitz for
the multi scale diffusion distance introduced in [29, 36, 37, 63, 74],
as the authors themselves point out their assumed estimate (2)
almost tautologically leads to the desired estimate for the speed of

convergence of T f to f.

The main reason is that we wish to avoid making any assumptions
about the decay of (1) and still establish a correspondence between
some version of smoothness of a function f'and convergence of T, f
to £, as t— 0% . Our main contribution is to establish, under almost

no assumptions, that local equi continuity (in ¢ ) is equivalent to

local convergence; i.e., local control of the differences T;f (x)-
T.f (¥) for all ¢ small is equivalent to local control of the differences
T.f (x)-f(x) for all small t. Here “local” is defined relative to a

representative of our family of proposed diffusion distances.

2.10. Theorem

For A>0, AX=0,,4,x are strictly positive.
Proof
The key idea is to look at all number t such that Ax > tx for some
non negative vector x (other than x=0). We are allowing inequality
in Ax>tx in order to have many positive candidates t. For the largest
value tpq, (Which attained), we will show that equality holds
AX=tpaxX
Otherwise if AX> t,,,,X is not a equality, multiply by A. Because A
is positive that produces a strict inequality A%x > t;q,Ax
.Therefore the positive vector y = Ax satisfies Ay>t,,q,Y and tyqy
could be increased. This contradiction forces the equality Ax =
tmaxX and we have an eigen value. Its eigen vector X is positive

because on the left side of that quality, Ax is sure to be positive.

To see that no eigen value can be larger than t,,,,, suppose Az=6 z .
Since § and z may involve negative or complex number, we take
absolute values |8]|z| = |Az| < A|z| by the triangle inequality. This
|z| is a non negative vector, so |§] is one of the possible candidate t.

Therefore |§|cannot exceed t,,4, Which must be §,,4y.

2.11. Definition

The mathematics of oscillation deals with the quantification of the
amount that a sequence or functions trends to move between
extremes. There are several related notions. Oscillation of a
sequence of real numbers, oscillation of a real valued function at a

point and oscillation of a function on an interval(or an open set).

2.12. Theorem

Let ¥, be topologically mixing ¢ €y, NC(X} ) and p=p, as
above. There are § > 0,h € C(X} ) with h>0 and veM(X} ) for
whichuh = &h, u*v = v, vh=1 and

lim [|67™u™g — v(g)h|| = 0 forall g € C(Z} ).
m-—oo

2.13. Definition
Given a reported type profile u and a node v with non-nil reported
type, define R, (u) = {N D } pep,qu is the set of all feasible trading

paths from the seller s to node v.

2.14. Result
Given any type profile x and any node v € D }(x)\D J'(x) cannot

increase her utility by misreporting.

2.15. Result
The weighted diffusion mechanism is individually rational and

incentive compatible.
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3. Application

Within pure mathematics, graph theory is studied in the pioneering
book on topology by veblen. A simplicial complex (or briefly a
complex) is defined to consist of a collection v of points together
with a prescribed collection S of nonempty subsets of v called

simplexes satisfying the following two conditions.

. Every point is a simplex

. Every nonempty subset of a simplex is also simplex.

Simplex is also simplex. The dimension of a simplex is one less than
the number of points in it; that of a complex is the maximum
dimension of any simplex in it. In these terms, a graph may be
defined as a complex of dimension 1 or 0. We call a 1-dimensional
simplex a line and note that a complex is 0-dimensional if and only
if consists of points, but no lines or other higher dimensional
simplexes. A side from these totally disconnected graphs, every
graph is a 1-dimensional complex. It is precisely because of the
traditional use of the words points and line as undefined terms in
axiom systems for geometric structures that we have chosen to use
this terminology. Whenever we are speaking of geometric simplicial
complexes as subsets of a Euclidean space, as opposed to the

abstract complexes, we shall then use the words vertex and edge.

3.1. Markov Process

A number of asymptotic problems for classical stochastic processes
leads to diffusion processes on graphs. We study several such
examples and develop a general technique for these problems.
Diffusion in narrow tubes [10] , processes with fast transmutations

and small random permutations of Hamiltonian systems are studied.

Let X2(t) & > 0, be a family of Markov Processes on a space M.It
is possible that as € —» 0 the process X*(t) moves faster and faster
in some directions, whereas the motion in other directions does not
accelerate. This is the situation where one can expect that the so-
called averaging principle works: we can identify the points of the
space M in the “fast” directions, obtaining a new space Y(M) (Y is
the mapping effecting the identification ).The “fast” motion “across”
Y (M) is not a Markov process in general, but in its “fast” time it is
nearly one because the characteristics of the “fast” motion depend
on the “slow” variables and vary slowly compared to the “fast”
motion itself. The slow process Y(X*(t)) also is not a Markov one
,but the averaging principle means that it converges in some sense to
a Markov process Y(t) on Y(M) as € = 0, and the characteristics of
this limiting process are obtained by averaging the characteristics of
the process Y(Xé(t))over the “fast” directions with respect to the

stationary distribution of the “fast” Markov process.

3.2. Complex analysis
For a given graph, since the diffusion matrix (I — aS)~tis dense ,
the computational complexity of the diffusion layer is @(N?d).In

general, we can approximate the diffusion matix with k th-order (2<

k < 4) expansion , which is sufficient sparse. Although it will lose
some performance, the efficiency can be greatly improved to
Q(kd|e]).IN theory, the efficiency of Graph diffusion network can

be at the same level as Graph convolutional Networks.

3.3. Graph Diffusion Network
In General, given a set of iid data points XeR™4 in d-dimentional
intrinsic

space, we focus on

P=H(X)(PeR™™).where H(.) is the function mapping X from the

finding an representation
input space to the low dimensional vector space. Thus the key of
graph representation learning is to exploit the structure information
information more effectively. Due to powerful ability of nonlinear
representation, the deep learning architecture is increasingly used
for graph representation learning. Experimental results on node
classification tasks demonstrate the effectiveness of the proposed

Graph Diffusion Network model.

3.4. Neural network on graph

Most recently the Graph convolutional Networks proposed by Kife
and Welling [1] for graph representation receives much attention.
Compared with Graph Convolutional Network , the features of the
proposed Graph Diffusion Network in this work can be summarized

as:

1) A novel diffusion induced graph representation learning
approach by applying high-order diffusion model.

2)  Through high —order diffusion in each layer of graph network,
both the local and global structures of data can be well
preserved; Meanwhile , the nonlinear information propagation
across layers facilitates the compact clustering of the data;

3)  During training the graph network ,a recurrent refinement on
the adjacency relationship across the input layer and the
hidden layer is implemented to progressively discover the
intrinsic structure of data ;

4) Different from Graph Convolutional Network, embedded node

representations can be learned in a fully unsupervised way.
3.5. Convergence to a diffusion process on graph

The tool we will use to establish weak convergence of distributions
in a functional space is martingale problems; Let, for any £>0, M*
be a metric space; and let Y* be a continuous mapping of M?¢ into

some graph Y(M).

Let g® be a closed set in M¥,its image Y® (g®) being, for small
ecloser to {04,0,,...,0p}then some I(¢),l(e) >0 as €—-0
Denote by gi the part of the set g® such that Y#(gg) is near the

vertexOy,.

For a small positive § > I(¢), let G be the set of all points x€ M®
such that Y4(x) lies closer than & to the set {05, 0,, ... ,0,,}; 1%, the

set of points at exactly the distance & from this set (of course,
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G%and r? depend also on €). The set r° is the union of mutually

disjoint sets r9; of points x € M? such that Y4(x) lies at distance &
from O,on the segment I;;similarly, GS=UT G]‘f,where G,‘Ethe part

of G®near 0,,.

Suppose that (X(t),Pf) is a strong Markov Process on M%.Let us
denote by ¢ the time when this process reachesg?; byo?, the time it
reachesr®. We do not suppose X*(t) to be continuous, but we will

suppose that Y (X#(t)) is continuous.

If x (£),0,is a family of points of M® such that Y¢(x(¢)) >y as
&€ =0, We obtain that the probability distribution of Y#(X%(-)) in
C(Y(M)) corresponding to the probability P,‘E(s) converges weakly to
the solution of the solution of the martingale problem corresponding
to the operator A, starting from the point y; that is , to the
probability P, corresponding to the diffusion process on the graph.
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