Volume - 10 | Issue - 10 | October - 2020 | PRINT ISSN No. 2249 - 555X | DOI : 10.36106/ijar

( Original Research Paper )

Statistics

Y
J

MARKOV SWITCHING AUTOREGRESSIVE MODEL FOR SUGAR

PRODUCTION

V.Anithakumari*

Assistant professor, Department of Mathematics, Muslim Arts College,
Thiruvithancode.*Corresponding Author

C.Bensica

Research Scholar, Department of Mathematics, Muslim Arts College, Thiruvithancode

‘ ABSTRACT ’ We propose a Seasonal Markov Switching Autoregressive model and apply it to analyze sugar production in India. The

dynamics is governed by two regimes, along which both the autoregressive coefficients and the innovation distributions
are altering moreover; the hidden regime indicator process is allowed to be non-Markovian. After examining stationarity and basic properties of
the model, we turn to its estimation by Markov Chain Monte Carlo (MCMC) methods and propose two algorithms. The values of the latent process
serve as auxiliary parameters in the first one, while the change points of the regimes do the same in the second one in a reversible jump MCMC
setting. After comparing the mixing performance of the two methods, the model is fitted to the Sugar production data.

KEYWORDS : Markov-switching autoregressive model, Seasonal time series, Transition probabilities, Markov switching
autoregressive unit root test and R-Package.

INTRODUCTION

Markov-switching models have achieved a great expansion in
non-linear time series modeling because of their great descriptive
properties. The idea is that parameters of the model can acquire
different values. This depends on the “regime” or “state” the
model is in. The parameter switching follows the dynamic
behavior of economic and financial time series quite well.
Hamilton (1992) described a procedure which should be kept in
case of a nonlinear modeling. In general, any principle is accepted
from the specific to the more common. So any researcher may
start with a simpler linear model, after maintaining given
conditions, pass on to more complex non-linear models.
Markov Switching Autoregressive Model

Let S, denotes an unobservable state variable assuming the

value one or zero. A simple Switching model for the variable z:

involves two AR specifications
o, + pBL, ., +¢, s, =1 a
s = R
ey ta, + BZ, + &, s, =2

where | ﬁ | <1 and 6} are i.i.d. random variables with mean

zero and variance O, : .This is a stationary AR(1) process with
mean Qfo / (1 - ﬁ) when § t = 1 . and it switches to another
stationary AR(1) process with mean (Ofo + Ofl )/(1 - ﬂ)
when § ¢ changes from 1 to 2. In this case, Z ; are governed by

two distributions with distinct means, and Sr determines the

switching between these two distributions

states).When §, = 1 for =12 ,... -To and S, = 1

(regimes or

model with a single structural change in which the model
parameter experiences one (and only one) abrupt change after t =

0. When S are independent Bernoulli random variables, it is the

random switching model of Quandt (1972). In the random

switching model, the realization of § ¢ 1s independent of the
previous and future states so that Z ¢ may be “jumpy"” (switching

back and forth between different states). If ¥, is postulated as

probabilities satisfy [7,; + P> =1. The transition matrix

governs the random behavior of the state variable, and it contains
only two parameters (pll and p22). The model (2) with the
Markovian state variable is known as a Markov switching model.
The Markovian switching mechanism has been first considered
by Goldfield and Quandt (1973). Hamilton (1989) has presented
a thorough analysis of the Markov switching model and its
estimation method: see also Hamilton (1994) and Kim and
Nelson (1999).In the Markov switching model, the properties of

VA ; are jointly determined by the random characteristics of the

driving innovations 6} and the state variable § ‘-
+p0 7 +E - @

where s, = 0,] are the Markovian state variables with the

L =oy+eys, + P2, +. ...

S smmarepr messrmass sesar ssr—essesaees ol

transition matrix and &, are independent and identically
-1

. . . . 2
distributed random variables with mean zero and variance O .-

This is a model with a general AR (k) dynamic structure and

switching intercepts. For the d-dimensional time series 2 t } the
equation (4) in written as
Z,=a,+os,+BZ +.... +BZ  +g ... (5

Where s, = 1,2 are still the Markovian state variables with
the transition matrix (3), Bi(i =1... ,k) are d¥d
matrices of parameters, and 6} are independent and identically

distributed random vectors with mean zero and the variance-
covariance matrix Z 0 .Until now we have discussed so far are

the 2-state Markov switching model because the state variable is
binary. Further generalizations of these models are possible. Also

4+ BT — =, <. (6)

Then, Z ; (and hence Zz ¢ ) depends not only on §, but also on
S,4 - -8, _;. As there are 2k+l possible values of the
collection §,38, ; . . .S;_; the model (5) can be viewed as

k+1
(3) with 2 states. Another generalization is to allow for time-
varying transition
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the indicator variable 1 {2} such that §, = 1 or 2 depending
SO

on whether the value of i! is greater than the cut-of (threshold)

value c, equation (1) becomes a threshold model.

In particular, suppose that Sr follows a first order Markov chain

with the following transition matrix:

[7TAs =1ls . =NTAs =115 . =11
_ ]H‘SI =1‘St—1 =1) IH‘S} =1| Sr—l =l)

IHSI = l‘sz—l = Z)IH’S} =1| Sr—l = 2’)
p — Pll 13]2 (3)
PZ] PZZ
where pf,f (f; _] = 1,2) denote the transition probabilities of

Sf = J —1 — i. Clearly,
as a ratio of the estimated parameter and its standard deviation
which can be obtained from the negative of the Hessian of the
log-likelihood function evaluated at the optimum. However, its
distribution under the null hypothesis is non standard. Hall et al.
(1999) have calculated the empirical p-values of this test by
simulating the model under the null hypothesis.

given that § the transition

Application to Sugar production Data

The monthly Sugar production shows an upward trend during the
period 1995: 01 to 2018:12 Figure 1. Apart from the sharp
increase in production, fluctuations in the production of sugar
within the year have also been seen. These seasonal fluctuations
in production may be due to the seasonality in the production of
the Sugar. In this paper. the univariate time series analysis of
monthly Sugar production in India is taken into account. The data
consists of 288 monthly observations from January 1995 to
December 2018.

Table 1: Estimation of the parameter of SMS-AR Model

Markov Switching Unit Root Test
The Markov-switching unit root test used in this chapter can be
obtained by running the regression of the ADF test where the

constant term is driven by an unobservable state variable .5,
Y = +b+§7JAY +s, NG

. The state variable is assumed to

where &, ~ N(O, O')

. The state variable is assumed to

N(0,&)
evolve according to an irreducible 2-state Markov chain whose
transition probabilities are defined by

p(st =jls,=is,=h.. -Q—l) :p('s: =75, :i) =by

where 1, _] = 1,2 , and Qt refer to the information set up to

where &, ~

. 3 . .
period 7~ . In short, this model endogenously permits the

constant term of the time series to switch as the date and regime

changes. The unit root tests are based on the #-statistic?
associated with 2 = O . The #-statistic can be easily computed
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Figure 2: Sample ACF of Seasonal markov switching autoregressive
models

Seasonal Markov Switching Autoregressive Model

Model Selection

Model choice will be performed by means of Bayes factors in
which the marginal likelihoods are computed according to Chib
( 1995) and Chib and Jeliazkov (2001) through the relabehng of the
hidden states by means of constrained permutat10n samphng From
the values of the marginal likelihoods, choose the SMSAR (2;4) as

Cc;):nf? AR (DI ARZ)|ARR) AR@)SAR(1) SA{‘ @ SA? @ Inet[:%trc the best among all the competing models Table 2,Table 3 and
Table 4.
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Figure 1: Actual data for Sugar Production in India (1995-2018)

Figure 3: Seasonal markov switching model for sugar production

Table 3: The Estimated parameter of SMS-AR Model with state 1 and state 2

Model: Markov Switching SAR(2;4,0,0)(3,0,0),, State: 2 AIC: 6116.096, BIC: 6171.884, Loglik : -3052.048
Low Production (State 1) High Production (State 2)

Coef. Estima Std.Er t-stats p-value Estimat Std.Er t-stats p-value
Constant 12269.2 12435.8 0.9866 0.3238 11486.3 12435.8 0.9237 0.3556
MSAR 1 0.9398 0.0797 11.791 <2.2e-]*** 0.9398 0.0797 11.7917 <2.2e-]***
MSAR 2 -0.2 0.06 -3.5 0.0004 1 *** -0.23 0.06 -3.5 0.0004 ***
MSAR 3 0.0916 0.0365 2.5096 0.01208%** 0.0916 0.0365 2.5096 0.0120%**
MSAR 4 -0.60 8238.41 0.000 1.00000 -0.00 8238.41 0.00000 1.0000

Residual Std.Err 11238.82 Residual Std.Err 11238.82
Multiple R*=0.6618 Multiple R"= 0.6542
Standard Residuals Standard Residuals
Min Q1 Med Q3 Max Min Q1 Me Q3 Max
-27232 -339 -1.90 382 3.983. -243 -23 4 35 22
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Parameter estimation

Using the criteria values of AIC wvalue of the log likelihood
function, estimated transition probability matrix that showed the
probability of switching between regimes, estimated variance and
considering the significant of p-value of estimated coefficients, and
conclude the Seasonal Markov Switching autoregressive model.
Uting this selection strategy the best performance is obtained for
the SMS-AR model with two regimes with four lag autoregressive
components. The detail of the model fitted for SMS-AR is
presented in Table 3. All estimated coefficients are statistically
significant at conventional significance levels. The transition

probabilities (A(s, =1|s,, =1)=0.592673.

(Hs, =2| 5, =2)=038772 Forecasting

First, select the model which is fitted by the series of natural sugar
production in india. Consider the problem of predicting future
values from a SMS-AR (2:4)(3.0.0.)12 process. Prediction 1s based
on estimated SMS-AR model. In Table 5 and Figure 4, predict for
24 months (from Januvary 2015 to December 2016), from the
seasonal markov switching autoregressive model, calculate the
error and do a comparison in Table 5.

Forecasts from ARIMA(4,0,0){3.0,0)[12] with non-zero mean
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Figure 4: Forecasting from SMS-AR Model (2;4)*(3,0,0)12

Table 4: Transition Probabilities for Seasonal Markov Switching
Models

S, Low High

S production production
Low production 0.5926750 0.4073250
High production 0.6122774 0.3877226

Table 5: Seasonal Markov Switching Model for error value

ME RMSE MAE MPE | MAPE | MASE
623.745 8478.031 | 5838.552 |-1.675| 11.128 | 0.6771
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Figure 5: QQ-plot of residuals in Seasonal markov switching
Models

RESULTAND DISCUSSION

Seasonal Markov Switching Autoregressive Model (SMS-AR) is
selected with the order p of the autoregressive process. The AR order is
p=4, therefore, there are two regime and the state 2. Consider the
Markov switching autoregressive (MS-AR) model; the transitions are
driven by a hidden two-state Markov chain. After that we will fit the
model for using the state 2 and the AIC value 6116.096 and BIC:
6171.884.The parameters are estimated for the models it is given in the
Table 3. The identified SMS-AR (2:4,0,0)(3,0,0)12 is as follows.

(1226808, -02%_ ~00%_ -060F_,~5 =5 =
1226%-09%_, -02%_, +0.0%_, - 06E_,+& s,=1
-

|11486 093 —02% ., ~00F_,—00ME & o5 =2

Seasonal Markov switching autoregressive model is selected in the
order (2;4,0,0)(3,0,0) the estimated values are given in the Table 3.

CONCLUSIONS

In this paper, introduce a seasonal Markov Switching Autoregressive
Model has been applied in the sugar production in India. The time
series data and relevant models are considered. They are able to
describe the marginal distribution of the time series and thus pre-
processing the data. The SMS-AR(2;4,0,0)(3,0,0),, model is identified.
The probability of transition from low production (statel) to low
production (statel) is 0.592675 and 0.6122774 denotes the probability
of transition from low production (state 1) to high production (state 2)
and so on. Since the single step transition probability matrix the
stationary transition probability matrix is attained in 5" step. At last, the
values are forecasted for the 24 months ahead. The results show that the
SMS-AR model is more accurate.
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