
A SIMPLE GIBBS SAMPLER FOR THE STATE ESTIMATION IN WIRELESS 
COMMUNICATIONS

Abhirup Banerjee Department of Statistics, University Of Calcutta, India.

Original Research Paper

Statistics

1 INTRODUCTION
In the last decade, we have seen a revolution in technology, and in data 
science, and be- cause of that wireless communication has become an 
extremely useful topic for research and development. A vast amount of 
data can be collected using wireless sensors without human- to-human 
interactions, and the collected data can be automatically sent to the 
base station for the analysis and for the prediction purpose. Nagarajan 
et al. (2009), Chatterjee et al. (2020) used wireless communications for 
providing better health services to the citizens in smart cities. Winkler 
et al. (2012) proposed models for wireless communications in military 
surveillance. Wireless sensor nodes, which are low-powered tiny 
devices are also used in geology (Shi-Young et al. 2012), and in 
criminology (Gong et al. 2016).

Using such useful sensor nodes, huge amount of data can be collected 
in a relatively short time, and hence an efcient data analysis technique 
is required. Traditional state- space models are typically used for 
analysing  such datasets,  where Kalman-Filter is used for the 
estimation purpose (Chatterjee and Das 2018). However, an 
alternative Bayesian approach is also proposed in Chatterjee et al. 
(2017) where Markov Chain Monte Carlo (MCMC) is used for the 
estimation purpose.  Chatterjee et al.  (2017) showed that an MCMC 
based computation is not only computationally efcient, but provides 
more accurate results than the traditional Maximum Likelihood 
Estimates (MLE). In fact, Chatterjee et al. (2016) proposed a non-
parametric Bayesian approach for the state estimation and anomaly 
detection in a cluster-based wireless sensor network. Bayesian 
methods are typically preferred because they can incorporate the 
relevant prior information on the regression coefcients, and can 
update the estimates based on the available data in a dynamic way.

In a traditional linear model with continuous state values, Bayesian 
computations are quite straight-forward. One needs to specify the prior 
distributions for the regression coef- cients, and then explicitly write 
down the likelihood function for the complete data. The posterior 
distribution, which is proportional to the product of the likelihood and 
the priordistributions, is used for computing the full conditional 
distributions for the regression coef- cients.  Based on these full 
conditional distributions, one can simply run a Gibbs sampler or a 
Metropolis-Hastings algorithm for estimating the regression 
coefcients. Chatterjee and Venkateswaran (2015) developed such 
computational approach for time synchronization in wireless 
communications.

However, for the binary or categorical state values, a generalized linear 
model is used. Albert and Chib (1993) showed that for such models 
posterior distributions are intractable. For addressing this issue, they 
proposed a data-augmentation technique where a latent continuous 
random variable is used for the computation purpose. The latent 
variable is connected to the observed categorical state values through 
some known thresholds. This data-augmentation technique has been 
widely used in the Bayesian literature. Biswas and Das (2020), Biswas 
et al. (2020), Biswas and Das (2021), Bhuyan et al. (2019) used this 
approach for modeling continuous longitudinal data containing excess 
zeros. More recently, Chatterjee et al. (2020) used this technique for 

automated health monitoring using discrete- time wireless sensors. In 
our work, we exploit this algorithm for analysing and predicting the 
binary and other categorical state values.

Our current work is motivated by a dataset where 200 sensor nodes are 
used for measur- ing the temperature of a chamber. The temperature of 
the chamber increases with time, and these sensors measure it (as state 
values) at ve discrete time points. The initial temperature was at zero, 
and then it increases upto 800 and above.  A plot of the raw dataset is 
shown in Figure 1. Note that these 200 sensors form a network, i.e. they 
share information over time. We use a linear statistical model proposed 
by Chatterjee et al. (2017) for handling such dependence among the 
sensor nodes. Then we t the mean curve, and predict the tem- perature 
at the intermediate time points. Next, we translate the continuous 
measurements into binary (0/1) values, since such a transformation 
makes the system energy-efcient. We use data from 160 sensor nodes, 
and predict the binary states for the 40 nodes, and compute the 
misclassication proportion. Then, we consider more than two 
categories, and develop

Figure 1: Plot of the raw dataset.

the Gibbs sampler algorithm for the similar estimation and prediction.

The rest of the paper is organized as follows. In Section 2, we analyse 
the continuous state values in a network framework, and estimate the 
regression coefcients. The Gibbs sampler algorithm is discussed in 
detail in this section. In Section 3, we consider the binary, and the 
categorical states (for more than two categories), and develop the 
corresponding computational algorithm. The effectiveness of the 
model is discussed in this section. Finally, in Section 4 we make some 
concluding remarks.

Table 1: AIC/BIC for different orders

2 Model and Estimation Method
2.1 Linear Regression Model

In this section, we consider the linear regression model proposed in 
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Order of f (t) AIC BIC

1 5301.99 5326.53

2 5078.07 5107.52

3 5079.37 5113.73
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Chatterjee et al. (2017) for predicting the state values of the sensor 
nodes. The model is as follows:

where X (t) denotes the state value of the i-th sensor node at time t, for i i

= 1, 2, . . . , 200, and t = 1, 2, . . . , 5. Here, f denotes the general effect of 
time on the current state values, X (t − 1) is the immediate predecessor i

state value, and α denotes the effect of X (t − 1) on X (t). Additionally, i i

Z (t − 1) denotes the average state values of all but the i-th state value at −i

time t − 1, and the corresponding regression coefcient β is known as 
“neighbourhood effect”.  The random errors ei(t) are identically  and 

2independently  distributed as N(0, σ ).

The general effect of time f can be modeled by P-splines (Chatterjee et 
al. 2016), or by Orthogonal Legendre polynomials (Biswas and Das 
2020). However, for the sake of simplicity, we model this using a 
polynomial fucntion of time.  In other words, we consider, f (t) = a  + 0

2 ra t + a t  + . . . + a t , where the optimal order r can be obtained using the 1 2 r

information criteria (AIC/BIC). For the given dataset, we consider 
r=1,2,3; and the results are summarized in Table 1.

Thus, we see that the AIC and BIC are smallest for r=2.

2So, our model becomes:  X (t) = a  + a t + a t  + αX (t − 1) + βZ (t − 1) + i 0 1 2 i −i

i(t).

2.2 Gibbs Sampler for Estimation
We develop a Bayesian estimation approach for this analysis. We 
consider the following prior distributions for the regression 
coefcients:

2 2 2a  ~ N(µ , σ ) , j = 0, 1, . . . , r; α ~ N(µ , σ  );   β ~ N(µ , σ );j j α β

                                                                                                         (2)

where IG stands for an Inverse Gamma distribution.
The joint likelihood function can be written as follows:

where π denotes the posterior distribution, and P denotes the prior 
distribution. Based on (3), the full conditional distributions are 
obtained as follows:

For the current analysis, we use the following prior specications:

We note that our prior distributions are mostly non-informative, and 
have minimal effects on the nal estimates as observed in a sensitivity 
analysis (results not shown).

We run the Gibbs Sampling technique to generate from the respective 
6full conditionals. We run 10  iterations and remove the rst 50,000 

values as “burn-in”. This removes the effects of the initial 
specications of the regression coefcients. Then, we save every 
1000-th observation to thin the Markov Chain. This removes the auto-
correlation among the MCMC iterations. Regression coefcients are 
estimated as their respective marginal posterior sample means.

2.3 RESULTS
In Table 2, we summarize the estimated regression coefcients, and 
their respective 95% Bayesian credible intervals based on MCMC 
iterations. We note that except the “neigh- bourhood effect” (β), for all 
other coefcients the credible intervals do not contain zeros. This 
reects the absence of neighbourhood effect in this dataset, but the 
effect of immediate predecessor value is signicant.

Next, we plot the estimated mean state curve along with the observed 
data. We see that the estimated curve passes through the central part of 
the data, and thus the estimation accuracy of the MCMC based 
approach is established.

Table 2: Estimates and Credible Intervals for the Coefficients

Figure 2: Estimated mean curve based on MCMC samples.

3. Categorical State Values
3.1 Binary State
Next, we consider binary state values for the given dataset. As 
mentioned in Chatterjee et al. (2020), binary state values can be stored 
and sent with low battery power, and hence it is energy efcient. 
Additionally, for some specic applications (e.g. health monitoring), 
binary states are more meaningful to the non-experts. For example, a 
non-medical person cannot understand whether 135 mEq/L sodium 
level in blood is a good sign or not. However, a binary state 
(normal/abnormal) is more meaningful to everyone.
3.1.1 Introducing Latent Variables
For the above dataset, we consider the algorithm proposed in Albert 

�and Chib (1993). We introduce latent variables X (t) as follows:

where the threshold δ is known. For our case, we consider δ=150.

The latent state values      are modeled similar to Section 2. The linear 
regression model used for this purpose is the following:
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Coefcient Estimate 95% CI

a0 3.45 (1.23,4.68)

a1 1.91 (0.67,3.19)

a2 2.33 (1.15,4.35)

α 2.31 (0.89,3.24)

β -0.0075 (-1.18,0.87)



Since at the rst time point there is no data for the previous times, we 
model:

3.1.2 Prior Specification and Gibbs Sampler
We use the following prior distributions :

(0) (0) (0) (0) (0) 2 (0)Suppose, the initial estimates are a , a , a , α , β ,σ  , which are 
sampled from the respective prior distributions.

Step 1: Take j = 0.

Step 2:

Step 3:

Step 4:

Table 3: Percentage of predicted class vs. actual class

6We run 10  iterations and remove the rst 50,000 values for each 
parameter as burn-in and henceforth take every 1000-th observation to 
thin the Markov Chain. We calculate the respective sample means. 
Regression coefcients are estimated by their respective sample 
means.

3.1.3 RESULTS
ˆ Now, we use the estimated parameter values aˆ , aˆ  , aˆ  , αˆ , β for 0 1 2

predicting the test dataset.

Since, the test set contains only dichotomous state values (1 or 0), for 
the rst time point we need to generate latent variables based on 
truncated normal distribution depending on aˆ  for every i as below:0

We classify this predicted value as 1 or 0, based on its value above or 
below the threshold. If we predict 1 as 0, or 0 as 1, this is a 
misclassication. Table 3 summarizes the misclassica- tion 
proportions. We note that more than 98% of the times, the predicted 
class match with the actual class. So, this result demonstrates the 
practical usefulness of the Gibbs sampler algorithm for binary state 
estimation.

3.2  More than Two-Category State
Now, we extend the binary states to more than two-category states. 
Sometimes, for a better understanding of the underlying process it is 
benecial to consider several categories for the state. We note that 
categorical states can also be sent and stored with lower energy than the 
continuous states. In the context of health monitoring, Chatterjee et al. 
(2020) demonstrated that the health status of a patient is better 
described by categories (e.g. excellent, good, fair, not so good, critical) 
than just binary outcomes (normal/abnormal).

By considering appropriate cutoff points γ , γ , ..., γ  , we link the 1 2 r

observed categories to the unobserved latent state values as follows:

where γ  = 50 , γ  = 200 , γ  = 400.1 2 3

Similar to the binary case, we model the latent continuous state values 
as follows:

2where the residuals εi(t)  N(0, σ ), independently.

3.2.1 Prior Distributions and Gibbs Sampler
We use the following prior distributions for our analysis:

Step 0:
For every i, we simulate the latent variables X (1) corresponding to the i 

very rst time point as follows:

Step 1:

* (j)We simulate latent variables X (t) based on f (t) as follows:(j)

Step 2:
(j)Using the simulated X* (t) values, we simulate updated estimates

Step 3:
6Repeat the steps 1 and 2, for j = 1, 2, . . . , N, where N = 10  in our 

analysis.

Step 4:
6We run 10  iterations and remove the rst 50,000 values for each parameter 

as burn-in and henceforth take every 1000-th observation to thin the 
Markov Chain. We calculate the respective sample means. Regression 
coefcients are estimated by their respective sample means.

Table 4: Percentage of predicted class vs. actual class

3.2.2 Calculating Misclassifications
ˆ We use the estimated parameter values aˆ , aˆ  , aˆ  , αˆ , β for predicting 0 1 2

the states of the test dataset.

Since, the test set contains only categorical state values (1,2,3 or 4), for 
the rst time point we need to generate latent variables based on 
truncated normal distribution depending on aˆ  for every i as follows:0
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Predicted class=1 Predicted class=0

Actual class=1 98 2

Actual class=0 1.67 98.33

Predicted 
class=1

Predicted 
class=2

Predicted 
class=3

Predicted 
class=4

Actual class=1 100 0 0 0

Actual class=2 0 100 0 0

Actual class=3 0 0 95 5

Actual class=4 0 0 5 95



*For t = 2, 3, . . . , T and every i, we can predict the remaining X  (t) based i

on the param- eter estimates and Xi (1) as:

We can classify these predicted values as 1,2,3 or 4 based on the pre-
specied thresholds.

Table 4 summarizes the results. We note that the categories 1 and 2 are 
predicted with 100% accuracy, while categories 3 and 4 are predicted 
with 95% accuracy. The misclassi- cation proportion is 0.05, for 
categories 3 and 4. This illustrates that the proposed Gibbs sampler is 
quite accurate in classifying the categorical state values over time.

4. DISCUSSION
In this paper, we have analysed a real dataset collected by wireless 
sensor nodes. These sensor nodes form a network, and share 
information over time. We used linear regression model for analysing 
the continuous state values, and then we implement Bayesian data-
augmentation technique for binary and categorical states with more 
than two categories. We use the computationally efcient Gibbs 
sampler for estimating the regression coefcients. For the continuous 
case, we plot the estimated mean curve which nicely summarizes the 
dataset. For the categorical states, we compute the misclassication 
proportion, and as demonstrated in Section 3, the proposed approach 
results in very small misclassication proportions. This shows that for 
analysing similar data collected by wireless sensor nodes, Gibbs 
sampler can be a very effective computational approach.

Our current dataset does not contain any missing data. However, in 
longitudinal studies it is not uncommon to come across missing 
observations at some time points. In particular, for wireless 
communication sometimes some sensor nodes are kept in sleep mode 
since in the sleep mode the sensors consume very less energy. As 
demonstrated in Chatterjee et al. (2017), all sensor nodes will not be 
active at all time point, but some will remain in the sleep mode. Under 
such situations, the linear regression model can be used for imputing 
the missing observations based on the observed states of the active 
sensors at that time points. A Bayesian joint model can simultaneously 
update the regression coefcients and the missing observations, and 
thus resulting in an efcient model for the state estimation. In the other 
longitudinal studies, if the underlying missingness is ignorable (e.g. 
missing at random), a similar data-augmentation technique can be 
implemented (Biswas and Das 2020). However, if the missingness is 
non-ignorable, then one can implement the methods discussed in 
Daniels and Hogan (2008). We leave these as our future research 
avenues.
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