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INTRODUCTION 
The goal of biomedical named entity recognition (Bio-NER) is to 
detect biological entities automatically in provided texts. The 
requirement for extracting biomedical knowledge stored in 
unstructured texts and converting them into structured formats is the 
ability to recognise biological items effectively. The Bio-NER 
objective thus has substantial scientic value. Traditionally, Bio-NER 
techniques have relied on carefully engineered features, or the 
construction of features using a variety of natural language processing 
(NLP) technologies and subject-matter expertise. DNorm [1], 
TaggerOne [3] and others are typical examples of such models utilised 
in the biomedical eld. However, the creation of features requires a lot 
of domain expertise and entity features.

Neural networks with autonomous feature learning capabilities have 
recently gained popularity in NER tasks [5,6]. Numerous neural 
network techniques [7–12] have been proposed to recognise 
biomedical things in the biomedical domain. These techniques often 
use conditional random elds (CRF) [14] as the input after learning 
vector representations of each word or token in a phrase using 
bidirectional long short-term memory (Bi-LSTM) [13]. Language 
models (such as ELMo [15] and BERT [16]) have just lately achieved 
state-of-the-art (SOTA) performance on a variety of NLP tasks. The 
Lee et al method [17] used the SoftMax function and Bio-BERT to 
achieve SOTA outcomes on various biomedical datasets in order to 
recognise biological items in the biomedical domain.

Neural network approaches can perform more effectively than feature 
engineering techniques because they can automatically learn features. 
By developing a model for sequence labelling to give each token in a 
given sequence a label, the present techniques typically formalise the 
Bio-NER issue as a sequence labelling problem. But neither of the 
models outlined above BERT nor Bio-BERT-Soft-max can 
successfully learn the semantic information contained in the 
framework for sequence tagging. When compared to language models, 
BERT's performance is inadequate [17]. It is challenging for Bio-
BERT to employ the semantic knowledge acquired by the system's 
nal layer in the framework for sequence labelling [18]. The present 
inclination of formalising NLP tasks into machine reading 
comprehension tasks served as inspiration [19–23]. The recognition of 
illness named entities has been studied in the literature using a variety 
of methods, including rule-based, conventional, and deep learning 
techniques [1, 2]. The classic machine learning techniques and rule-
based systems both largely rely on domain knowledge and hand-
crafted rules or features. Since they rely heavily on manual 
involvement, such systems are typically not scalable. Because deep 
learning approaches can automatically extract features from clinical 
text to generate meaningful representations, they have recently 
become more popular.

In order to accomplish this, we propose a syndrome disease NER 

model for medical trial texts that combines intense contextual 
embeddings with pertinent domain-specic features, word 
embeddings, and character embeddings in a framework called Gated 
Recurrent Neural Network-Conditional Random Field (GRU-CRF). 
The primary contributions are listed below: By incorporating pertinent 
domain-specic characteristics, word embeddings, and character 
embeddings into a Gate recurrent neural network-conditional random 
eld architecture, a disease NER model for clinical trial texts is 
created, as well as sentence-level contextual information via deep 
context embeddings learned with language models [4]. Using data 
from clinical trials, compare the model's performance to other disease 
NER models that are already in use. To our knowledge, this is the rst 
deep learning-based model that has been suggested for specically 
extracting clinical concepts from clinical trial text. Experimental 
ndings reveal that our model outperforms current state-of-the-art 
methodologies, and additional qualitative research demonstrates the 
model's efcacy for clinical trial texts.

RELATED WORK:
Deep learning models have become more well-liked recently and have 
been successfully used in the biomedical NLP sector. The disease NER 
challenge has been performed using a variety of deep learning models, 
including convolutional neural networks (CNN) and recurrent neural 
networks (RNN) [2]. Character embeddings produced by stacking the 
convolution layers of a character-based CNN model were used in [9] 
proposed disease-named entity recognition model [8]. To enhance the 
performance of recognition in our suggested model, we apply external 
domain knowledge embeddings. The capacity of the Bi-LSTM to 
consider both the forward and backward contexts with respect to the 
specic references for identifying clinical events such as diseases and 
therapies has led to its widespread use in the literature [9,10]. 

Additionally, CRF maximise the chance of witnessing a sentence 
given a particular set of mentions, which can lead to improved 
accuracy for the entity recognition test. CRF consider the entire 
sentence rather than individual word locations. In order to infer named 
entities from input text, researchers mix Bi-LSTM and CRF networks 
and take into account both pertinent input features and sentence-level 
annotation data [11]. A disease NER model that cascades a CNN model 
with an RNN to provide character embeddings was proposed by [1]. In 
contrast, we combine character-based CNN and LSTM models with an 
integrated embedding strategy. For the purpose of extracting 
biomedical concepts, deep learning techniques have also been 
demonstrated to be efcient when combined with contextual 
information and domain expertise [12,13, 14].

A novel language model-based technique called ELMo [4] can be used 
to produce word embeddings that accurately reect the context of the 
words in a phrase. ELMo was studied by Crichton et al. [3], however 
they did not use domain knowledge embeddings or test the model on 
clinical trial texts. Although [1] model design is comparable to ours, 
they did not take contextualised embeddings from the provided corpus 
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into account. In contrast, to discover better representations of the 
clinical trial text, we consider both contextual word embeddings and 
domain knowledge embeddings.

Word embeddings might retrieve the latent syntactic and semantic 
information of tokens and map these words/tokens into dense low-
dimensional vectors using a vast part of unlabeled data. Several word-
embedding techniques have been presented over the past ten years, 
with Word2Vec [26] and GloVe serving as notable examples. 
Word2Vec either uses the Continuous Bag-Of-Words (CBOW) model 
to model the current word/token based on the surrounding context, or it 
uses the Skip-Gram model to predict surrounding words based on the 
actual word.

GloVe [17] makes excellent use of statistics and both local and global 
aspects of the corpus by employing a special weighted least squares 
model that trains on global word-word co-occurrence counts. The 
word or token taught using these techniques is mapped to a specic 
vector, though. As a result, word embeddings developed using these 
techniques can only simulate context-free representations. Language 
models from the present day, including ELMo [15] and BERT [16], do 
improve performance on NLP tasks. Contrary to conventional word 
embeddings like Word2Vec and GloVe, the embedding that the 
language model assigns to a word or token relies on the context, which 
means that the same word or token may have a different representation 
in other scenarios.

To model the contextual development of the input sequence, ELMo 
[15] combines separately trained left-to-right and right-to-left LSTM. 
Transformer is used by Bi-LSTM-CRF to jointly condition on both left 
and right context in all layers in order to pre-train representations. A 
vast corpus of data is used to pre-train the model, and it is then tuned 
using the target dataset as a result of its tremendous success.
 
In order to better portray expert and knowledge-intensive biomedical 
literature, Chen [30] reformulated the biomedical named entity 
recognition challenge as reading comprehension that combines realm 
specic knowledge from UMLS. By using a multi-way screening 
reader method, specically they incorporate three different forms of 
information, including CUI, semantic type, and evidence snippets, to 
adaptively calculate contextual representations for the sequence, 
question, and evidence snippets. On most Bio-NER datasets, 
experimental outcomes are outperformed the state-of-the-art baseline 
courtesy to domain-specic expertise.

METHODOLOGY
NER can be cast as a sequence-labelling task. In this work, we propose 
a hybrid Bi-GRU-CRF model to identify disease name mentions. This 
Gate Recurrent neural network enables considering both forward and 
backward features in a given sentence and sequential CRF annotates 
the tags taking the soft-max output of Bi-GRU layer as input. Our 
model comprises of the following: (i) a feature representation layer, 
and (ii) a bidirectional GRU-CRF network. Figure 1 depicts the overall 
architectural layout. We discuss the details of the architecture below.

Figure 1: overall architectural layout

Feature Representation Layer
The feature representation layer takes a sequence of input (a , a , ..., an) 1 2

containing n words and generates a d dimensional feature vector for 
each word. Consider several types of embeddings to capture the 
inherent features of the sentences. Concatenating four different 
representations word embedding, context embedding, domain 
knowledge embedding, and character embedding leads to the creation 
of the d-dimensional feature vector for each phrase. The detailed 
feature representation layer is shown in gure 2

Domain Knowledge Embedding
Inspired by [1], the domain knowledge dk embedding is obtained from 
two sources: clinical vocabulary and a hybrid clinical NLP engine [15]. 
The domain knowledge embedding is denoted as Fdk = [Fclin; Ftag]. We 
combine numerous dictionaries of diseases, including MEDIC, UMLS, 
and others to obtain a rich clinical vocabulary to generate the lexicon 
embeddings. We build a trie like data structure for efcient access of the 
vocabulary. Generally, trie like data structures are preferable to store 
words of a dictionary such that adding, modifying, and querying the 
words become efcient. Such structure also stores tags associated with 
each word in the vocabulary. Therefore, a given sentence can be easily 
searched in the trie dictionary tree and corresponding BIO sequence tags 
can be annotated automatically. Transform the BIO tags to generate 
lexicon embeddings Fclin. The clinical NLP engine uses a syntactic 
parser and clinical ontologies such as SNOMED-CT to provide tags. 
Then, we generate the external tagging embeddings Ftag based on the 
sequence of tags provided by the NLP engine.

Figure 2: elaborate feature representation layout

Character Embedding
Following [1], Generate a character embedding vector, F , which is char

formed by embedding vectors charGRU (V ). The model takes GRU

words as input, then rst looks up in the character embedding matrix 
P ×|C| (where the embedding vector dimension is d) and forms the d

embedding matrix, Ch . The matrix, Ch  is then convoluted with k k

multiple kernel matrices. Thereafter, we apply a pooling operation to 
get the nal xed-dimensional embedding vector, F . The charGRU cnn

architecture comprises a bi-directional GRU layer and takes the 
sequence of characters in a word to generate the character embedding 
vector F , which consists of both direction hidden states [h  ; GRU forward

h ].  backward

Context Embedding
GloVe-based word embedding mainly relies on word-level co-
occurrence statistics. In order to encode context-level information, 
obtain context-aware word representations using the language model-
based method, ELMo [4]. It comprises of a character-based 
Convolutional Neural Network (char-CNN) and two layer 
bidirectional-Language Model (bi-LM) to embed contextual 
information through a highway connection and a low-dimensional 
projection layer, which are introduced after stacking the char-CNN and 
bi-GRU layers. Unlike traditional word embedding that represents a 
stable embedding vector for downstream tasks, ELMo captures 
contextual information dynamically for each word as each word is 
represented as a function of the given sentence.

Word Embedding
Obtain word embeddings using the publicly available GloVe1 
representation. It generates word embeddings by considering both 
local context window and the global matrix factorization. Use 400-
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dimensional vector representation for each word and denote this 
embedding as F .word-embedding

In summary, the feature representation layer concatenates the above 
four embeddings to represent a given sentence. The nal feature 
embedding as F  = [F ; F ; F ; F ]. These features are feature word-embedding elmo char dk

then fed into the bidirectional GRU-CRF layer for tagging the 
sequence of the clinical trial text.

BIDIRECTIONAL GRU-CRF LAYER
Bidirectional GRU-CRF architecture to predict the corresponding 
tags: O (O=outside), B-disease (B=beginning), and I-disease 
(I=intermediate) from a given clinical trial text. In particular, 
Bidirectional GRU takes a sequence of embedded feature, F  as input seq

and generates the sequence y = (m , m , ..., m ) that represents feature 1 2 n

encodings from the embedded features. We denote this encoded 
feature as F = [h ; h ]. This feature vector, F concatenated with GRU backward GRU 

domain knowledge embedding, F    to generate the input feature dk

vector, [F  F ] for the fully connected layer. We consider the output GRU, dk

of the fully connected layer that is multiplied with corresponding 
weights, W and bias, bf, as input for the CRF layer and nally, the f 

model envisions the most excepted tag sequence.

RESULT
On datasets from the BC5CDR [25], NCBI- Disease [26], and 
JNLPBA [27], all of which have been pre-processed and tested using 
our technique. The BC5CDR dataset comprises one of these datasets, 
and it is used to assess chemical and disease entities, respectively. 
Because most of the existing methods were evaluated on BC5CDR-
Disease respectively, we did the same. Table 1 lists the statistics of 
these datasets.
 
The initial training and development set were combined to create a new 
training set for the trials. Then 10% of the new training set was sampled 
as the validation set to tune hyper-parameters. The test set was only 
used to evaluate the model. Most existing works [3,9,12,17] split data 
in this way, and we also followed this way. Because the limitation of 
computational complexity, most of the existing works are based on 
BERT base model [16]. To facilitate comparison with these works, all 
BERT models in this work are based on the BERT base model. 

Table 1 Statistics of BioNER datasets

The performance is measured with the accuracy, whose attributes 
equal importance to true predicted and false predicted. In this work, 
each experiment is repeated ve times, and we report the maximum 
accuracy. Moreover, we also exploit T-test to perform statistical 
signicance tests and report the condence interval. In our 
experiments, Bi-LSTM CRF reaches its highest performance at 1 or 3 
epochs on the BC5CDR-Disease, NCBI and JNLPBA datasets. The 
reasons are twofold: 1) these data- sets, especially BC5CDR, are large 
in scale; and 2) Bi-LSTM CRF has powerful feature learning 
capabilities.

Performance comparison for different models
We examined outstanding BERT models in the biomedical area to 
examine the impact of model. These models each achieved SOTA 
performance in their individual works.
 
Table 2 illustrates the effect of different model performance. Overall, 
the performance of Bi-GRU-CRF is better than BERT. Compared with 
BERT is sensitive to uppercase and lowercase characters. This 
experimental result shows that the uppercase and lowercase character 
information are useful for SDNER tasks on most datasets. Moreover, 
we also noticed that the performance of Bi-GRU-CRF shown in Figure 
3 (98% in accuracy) is superior to BERT (87% in the accuracy) shown 
in Figure 4.

Table 2 Performance comparison for different datasets with 
models.

Summary of results are shown in Table 3. In the rst illustration, false 
negatives (FN) were identied by BERT, but they were changed to true 
positives using Bi-GRU-CRF (TPs). This example shows that SDNER 
has certain advantages over BERT in terms of learning syntactic 
information 

Figure 3: Performance comparison of different of type text using 
Bi-GRU-CRF Model

Figure 4: Performance comparison of different of type text using 
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Dataset Entity Type No. of annotations No of sentences
BC5CDR-
Disease

Disease 12,694 14,228

NCBI-Disease Disease 6,881 7,639
JNLPBA Disease 35,460 22,562

Dataset Model Accuracy
BC5CDR-Disease BERT 87.56

Bi-LSTM-CRF 96.70

NCBI-Disease BERT 85.11 
Bi-LSTM-CRF 96.72

JNLPBA BERT 78.45 
Bi-LSTM-CRF 98.65



BERT Model

(e.g., phrases and segments). The second example is a consistency 
problem. It can be seen that BERT only recognized one “obstructing” 
in the whole sequence, while Bi-GRU-CRF corrected the error of 
BERT. This example shows that Bi-LSTM-CRF can alleviate the 
problem of label inconsistency by learning the semantic information of 
the entire sequence. In the third and nal example, false positives (FPs) 
were identied by BERT, but real negatives were rectied using Bi-
LSTM-CRF (TNs). The fourth and fth are segmentation problem 
examples. Compared with BERT, Bi-LSTM-CRF can better 
distinguish the boundary information of entities. These four examples 
all demonstrate the effectiveness of Bi-GRU-CRF in the syntactic 
learning. Through the case Through the case study, we can infer that 
compared with BERT, Bi-GRU-CRF has better performance in 
syntactic and semantic learning. Specically, Bi-GRU-CRF can 
eliminate the issue of label inconsistency, x some FNs and FPs, and 
appropriately identify entity boundaries

TABLE-3 SUMMARY OF RESULT

CONCLUSION AND FUTURE WORK
This paper delineate the syndrome disease NER model   for bio-
medical trial texts by using realm contextual embeddings with relevant 

domain-specic features, word embeddings, and character 
embeddings in a bidirectional gated recurrent neural network - 
conditional random eld framework. Extensive experiments and 
analyses on a clinical trial dataset and the benchmark datasets dataset 
show the effectiveness of the proposed model. In the future will 
experiment with deep bidirectional transformer-based language 
models to generate deep contextualized embeddings of clinical trial 
texts.
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No Dataset Entity Model Result
1. BC5CDR-

Disease
Cholecystectom
y -syndrome 
Disease
Obstructing - 
Others

BERT ERCP versus MRCP 
is recommended to 
exclude obstructing 
mass.  The ndings 
could reect changes 
of cholecystectomy.

Bi-LSTM-
CRF

ERCP versus MRCP 
is recommended to 
exclude obstructing 
mass.  The ndings 
could reect changes 
of cholecystectomy.

2. NCBI-
Disease

left atrial- 
Others
intracardiac 
thrombus - 
syndrome 
Disease

BERT echo smoke is seen, 
and in fact, an 
intracardiac thrombus 
is identied and 
circumscribed at 1.83 
cm in circumference 
at the base of the left 
atrial appendage.

Bi-LSTM-
CRF

echo smoke is seen, 
and in fact, an 
intracardiac thrombus 
is identied and 
circumscribed at 1.83 
cm in circumference 
at the base of the left 
atrial appendage.

3. JNLPBA pituitary 
adenoma, 
noncalcied 
craniopharyngio
ma, Rathke's 
cleft cyst - 
syndrome 
Disease
retrospect - 
others

BERT In retrospect sellar 
enlargement could be 
seen on the 
angiogram X-rays. 
Differential 
consideration was 
given to cystic 
pituitary adenoma, 
noncalcied 
craniopharyngioma, 
or Rathke's cleft cyst 
with solid component

Bi-LSTM-
CRF

In retrospect sellar 
enlargement could be 
seen on the 
angiogram X-rays. 
Differential 
consideration was 
given to cystic 
pituitary adenoma, 
noncalcied 
craniopharyngioma, 
or Rathke's cleft cyst 
with solid component


