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1. INTRODUCTION 
Screening and optimization of a biotechnological process are integral 
to picking the right drug candidate, selecting optimum conditions for 
higher metabolite/recombinant protein productivity, etc. Any 
fermentation process aims to maximize biomass or metabolite 
production per unit volume. In today's competitive world, where 
developments are rapid and the technology quickly gets obsolete, time 
and productivity are crucial to the success of any biotechnological 
operation. The productivity of intra-cellularly expressed recombinant 
protein depends on the cell population and per unit cellular protein 
expression (Jawed A, 2008). Cell growth and product formation are 
generally considered to have a stoichiometric relation, where the 
carbon or the primary energy source, the nitrogen source, trace metals 
and minerals along with oxygen from the cell culture medium are 
transformed into biomass, products/by-products, etc. Volumetric 
productivity, called q, refers to the amount of metabolite or desired 
product produced per unit volume per hour. It can be given by 

where
q: Specic rate of product formation (g product liter-1 h-1)
dC = change in the product concentration
dt = change in time
As the concentration of cells increases due to continuous growth, 
productivity can be best assessed after the process concludes.

Chemically dened culture media requires the microbe to synthesize 
every cellular component along with primary and secondary 
metabolites from simple, chemically dened substrates. Therefore, 
culture medium formulation initially focuses on boosting cell growth 
by providing balanced nutrients in sync with the cellular requirements, 
cell physiology and required cell density of the microorganism of 
interest. Once the components are optimized, complex components are 
added to fulll the requirement of the culture for vitamins and other 
trace components. Previously published/used media for the related 
microbes can be used as a base to optimize the process under 

consideration. The inclusion of complex nutrients, such as tryptone, 
yeast extract, peptone, and casein hydrolysate, etc., help microbes to 
grow, improve the quality and amount of the protein expressed, by 
providing readily available substrates, biosynthetic precursors, 
vitamins, etc. (Kishimoto and Suzuki. 1995). There is a lot of 
information, in literature, advocating a signicant increase in yields 
(approximately ten folds), of recombinant proteins just by the 
optimization of the medium composition. Some authors have 
attributed the increase in the expression level of recombinant protein 
with the addition of organic (undened) nitrogen source(s) to reduce 
the burden on the cell due to the availability of biosynthetic precursors 
(Zabriskie et al. 1987; Kweon et al. 2001). Others have termed the 
increase in the expression of recombinant protein due to the 
suppression of protease activity by the amino acids present in these 
complex nutrients (Mizutani et al. 1986; Tsai et al. 1987; George et al. 
1992). Besides this, complex nitrogen sources have also been reported 
to increase plasmid stability by Matsui et al. 1990 and improve the 
copy number of the plasmid (Shin et al. 1997). At the same time, the 
inhibition of protein synthesis beyond a certain concentration of 
complex nitrogen sources is also reported (Rinas et al. 1989; Matsui et 
al. 1990; Li et al. 1998). If cell growth along with the synthesis of the 
metabolite/required product is attained, the next step normally is the 
optimization of medium components for maximizing cell growth and 
desired metabolite production. There exist two main categories of 
culture medium/process optimization techniques, currently used in 
different parts of the world. The classical method or OFAT, that is One 
– Factor – At – a – Time and advanced machine learning optimization 
techniques. The successful formulation of an optimized medium is 
easy but its slow, time-consuming when optimization is approached 
using the OFAT approach. A step ahead of the classical method is 
employing the statistically designed experiments that can quicken the 
optimization process. Several methodologies have been employed in 
the past for the formulation of a complex medium. It enlists Plackett – 
Burman Design (1946), Response Surface Methodology (Box and 
Wilson, 1951), Expert System Approach (Kishimoto and Suzuki. 
1995), etc. Recently, the application of machine learning techniques 
makes new dimensions in the eld of medium optimization. These 
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methodologies demonstrate great potential to be employed for the 
successful development of the fermentation medium. Traditional cell 
culture/fermentation medium optimization is a search for the optima 
by changing process parameters step by step and quantifying cell 
growth or metabolite production at every step. Modern medium 
optimization approaches break this routine and search for global 
optima by simultaneously varying multiple components. Although the 
machine learning approach (AI) is more effective than the classical or 
statistical one, yet the application of machine learning nds its 
foundation rooted in the data obtained through classical or statistical 
designs. Therefore, irrespective of the SDs or AI methods used, the 
optimization process should be executed systematically, which 
requires the framework of overall process design and requirements. 

In the present article, we discussed the commonly used techniques 
apply for establishing the appropriate combination or concentration of 
nutrients and that would support the desired cell growth and/or 
synthesis of a microbial product(s). However, optimization should be 
attempted within the context of the overall process requirements. 

1.1 The classical method of medium optimization 
Traditionally, medium optimization with dened components is 
performed in a series of shake-ask experiments termed as One-Factor 
at a Time (OFAT). In OFAT experiments, a single participating factor is 
varied sequentially, while all others are xed arbitrarily at their 
respective levels. The success and validity of this design approach 
relies on the expertise and knowledge of the researcher. The 
experiment(s) therefore, are sequentially repeated and continued with 
selected variable(s) until the maximum cell growth or protein 
expression/production is achieved. This factor is now xed at its 'best' 
level, and another factor is varied until all variables are screened. The 
resultant shift in response (cell concentration/cell growth rate and/or 
product yield) is contrasted to that of the earlier experiments and the 
response is plotted against each variable. Figure 1 presents a quick 
summary of the general optimization process. 

As it is evident from Figure 1(a,b), numerous combinations of 
variables are possible, but with the OFAT approach, not all the 
combinations are attempted. The optimum results predicted through 
this approach, are not mostly inaccurate as the data generation is 
fragmented with discrete experiments that are mutually exclusive and 
have provided no account of medium component interactions, 
whatsoever. This form of experimentation can be regarded as trial and 
error which requires luck, experience, skill and intuition for its 
success. By employing this methodology, Cocaign-Bousquet et al., 
(1995) revealed, the exact microbial/cellular nutritional requirements, 
simplifying the synthetic medium formulation for the prolonged 
growth of L. lactis. Several carbon and nitrogen sources along with 
amino acids were employed in step-by-step experimentation for 
producing a cytotoxic metabolite from Stachybotrys chartarum called 
verrucarcin (El Kady and Moubasher, 1982). Fewer successful single 
factor optimization methods have been reported in the past too (Chary 
et al. 1989; Monot et al. 1982).

The fermentation or the culture medium is not a simple formulation, 
where the effect of every component can be isolated from the other. 
There is a considerable interaction of each component with the rest. 
Microbes too behave in a very complicated way, concerning the uptake 
and utilization of medium components. A medium component may be 
preferentially utilized over the others; uptake of a nutrient can change 
depending on competing components, a constituent might suppress the 
effect of by-products released by the organism, diminishing 
concentration of one component may switch the preference of the 
culture for another component. Classical OFAT methods do not 
account for such kind of interaction of medium components and do not 
accurately show the absolute effect of one component on growth or 
other parameters under consideration. OFAT is, therefore, inefcient, 
unreliable, results in pseudo-optimal conditions and relies on intuition 
and experience for its success. Additionally, OFAT methodologies are 
simpler and obvious but these consume a lot of time and resources 
(Singh et al 2017). 

1.2 Statistical method of medium optimization 
An alternative optimization strategy that is slowly becoming popular 
in academia, as well as industry, is the application of statistical designs 
and optimization experiments that allows the researcher to estimate the 
effect of one or more than one independent variable simultaneously 
(Greasham and Inamine. 1986; Greasham and Herber. 1997). The 
strategies used for such optimization are collectively called the Design 
of Experiments (DOE). The approach is generally hierarchial and 
begins with primary screening to differentiate those variables 
(normally three to ve or sometimes more depending on the culture 
requirement) that have a signicant effect on the anticipated response 
from a pool of relevant variables (≥ ve) with a minimum of testing 
(Figure 1©).  

Once the signicant components are deciphered, as the next step, Full-
factorial, Fractional-factorial, Central Composite Design (CCD), 
Response Surface Methodology (RSM), Plackett-Burman method, 
Taguchi design, etc., are employed with the selected components 
(Roseiro et al. 1992; Plackett and Burman 1946), for detailed 
parameter selection, process optimization and robustness testing. 
Optimization of cell culture medium with dened components by 
Plackett-Burman design has been reported by many workers (Metzger 
et al. 1984; Singh & Tripathi 2008; McIntyre et al. 1996; Kisaalita et al. 
1993). Plackett-Burman method is too simplistic to be executed in the 
current scenario for complete optimization. On the other hand, a full 
factorial search generates a huge number of experiments, that defeats 
the benets of statistical optimization. RSM is productive only when a 
few crucial variables (between two or three) are to be examined 
(Garcia-Ochoa et al. 1992). The target is to usually nd the 
combinatorial levels of these process factors that support the best 
suitable response in a time-dependent manner, employing RSM. There 
are many publications available that employ the successful use of RSM 
have been described (Zhang et al. 1996). The fermentation process 
involving C. bombicola, for the production of an important surfactant 
sophorolipid, Casas et al. (1997) initially used a 4-factor, 2-level 
factorial design, subsequently a 3-factor, 3-level response-surface 
design to improve and formulate an optimized synthetic medium. The 
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2+curvature-effect analysis inferred that Mg in the culture medium had 
no signicant effect while nitrogen and phosphorus sources showed 
their presence was crucial for the culture growth. Other workers have 
used RSM for biosorption of chromium (Margarita et al. 2005), ethyl 
butyrate production by lipases (Jose et al., 2005) Another easy-to-use 
and quicker optimization methodology is the Sequential Simplex 
methodology (Leggett et al., 1983; Spendley et al., 1962), the optimal 
combination is approached, via series of sequential steps toward better 
and optimal results, where the maximum value can be obtained with a 
nominal number of steps. The methodology uses Pattern-Seeking 
Approach (PSA). PSA is non-statistical but it gives a fair idea for 
identication of the process optima rapidly. DOE is increasingly being 
used in the industry, but still, many scientists and researchers resort to 
the use of OFAT techniques for process or product development. DOE 
employs simple/complex statistical methods to arrive at the real 
optima, taking all the parameters into considerations. The results 
generated are sequentially predicted via a mathematical model, 
making the process robust and reproducible. In a DOE setup, a large 
number of process variables can be optimized using fewer experiments 
which reduces the experimental waste generation, saves time and 
money. DOE uses mathematical equations to select the factors that 
signicantly affect the results. The process variables are altered 
simultaneously so that the effect of one variable on other variables can 
be accounted and studied. Once identied, their effect on results 
(growth/protein production, etc.) is quantied and tested for 
signicance. Using ANOVA and multiple regression analysis DOE is 
capable of predicting the most important variable for increasing/ 
decreasing the metabolite production or toxic by-products generation 
respectively. The analysis can easily be done using various software, 
such as Statistica®, Design-Expert®, MATLAB, etc. Table 1 lists in 
brief the various methodologies and their details. The objective of this 
article is to encourage young researchers to use statistical techniques 
for their experimental work. We found Design-Expert™ Software 
from Statease Inc. easy to use and user-friendly for researchers with 
little knowledge of Mathematics and statistics, compared to the other 
software packages. 

1.3 Machine learning approach to medium optimization 
Articial Intelligence (AI) techniques, such as Expectation-
maximization, Deep Learning/Articial Neural Network, Genetic 
Algorithms, Simulated Annealing are some of the machine learning 
tools applied in the various optimization studies. An articial neural 
network is one of the most used tools of the machine learning 
approach. It is a self-learning approach which is generally used for the 
prediction, and to nd out the optimal solution quickly. Zhang et al., 
(2020) used the hybrid of articial neural networks and a genetic 
algorithm for the optimization of the four basic conditions (agar 
concentration, light time, culture temperature, and humidity) of plant 
tissue culture using a three-layer neural network to predict the 
differentiation rate of melon. Badhwar et al., (2020) compared the non-
linear hybrid mathematical tools GA–ANN and GA–ANFIS for 
improved pullulan production from Bapat PM, Wangikar 
Aureobasidium pullulans and process optimization (substrate 
concentration, incubation period, temperature, pH and agitation 
speed). Bapat and Wangikar (2004) used machine-learning-based 
approach such as Genetic algorithm (GA), Neighborhood analysis 
(NA) and Decision Tree technique (DT) for the optimization of 
rifamycin B from Amycolatopsis mediterranei S699.

2. Methodology 
Statistical optimization methods are approached in a well-dened way, 
moving from simple to complex models. The methodology begins 
with simple designs meant for screening and moves further to 
optimization and robustness testing/ Model Validation. To understand 
the design method more let's take an example. For screening design, 
let's consider 5 factors, e.g., Glucose concentration (A), Yeast extract 
concentration (B), NaCl (C), Temperature (D) and pH (E) as 
independent parameters that affect cell growth (Response 1) and 
metabolite production (Response 2). Starting with Plackett-Burman 
design, all the parameters are varied at 2-levels (a higher and a lower 
level). The design mainly estimates the main effects of participating 
components. This design can be used to screen a few signicant 
components from a larger array. It is assumed that in the real scenario 
methodology, only a few factors are signicant that affect the response. 
The general 2-level factorial screening design is shown in the form of 
Table 2a. Each parameter is represented for its units, type and the lower 
and higher experimental boundaries. The Experimental table 
generated by Design-Expert software is shown in Table 2b. Each 

column indicates the experimental parameter with its different levels, 
usually +1 and -1. The notation “+” indicates as 'High' level and “-” 
indicates a 'Low' level of the selected experimental range. The total 
number of runs is calculated as level [no. of factors (n) – 1]. For 5 

5-1factors, varied at 2 levels, the total number of runs will be 2  = 16.  
Looking into the experimental details in Table 2b, only 16 runs are 
enough to perform the complete set. The total number of runs increases 
as the parameters are varied at 3 or 5 levels or we can say as the number 
of variables increases. Each run is executed and the results; i.e. cell 
growth in this example is fed in the corresponding row. Based on these 
results, the Analysis of Variance (ANOVA) is carried out and the 
signicance of each variable against the response is calculated. Based 
on the signicance (F-value and p-values), process variables showing 
the maximum effect on the response are selected for further 
optimization steps. Screening designs are benecial as these balances 
the cost of experimentation and the information obtained from the 
experiments. Screening runs can be considered as a prelude to further 
experimentation, mainly for detailed optimization (RSM) studies. 
Screening designs consider fewer experimental points and therefore 
can be performed quickly. Screening designs can be upgraded to multi-
level factorial designs for deeper insights and analysis of the obtained 
responses.

Other statistical designs which can be used in place of PBD are Taguchi 
orthogonal array methods, Taguchi designs are generally known as 
orthogonal arrays, which consist of a set of fractional factorial designs 
ignoring the interaction terms and concentrating only on the estimation 
of main effects. Taguchi uses the orthogonal arrays for arriving to 
optima, i.e., La(b^c), 
where, 
La = number of experimental runs, 
b = number of levels of each factor, and 
c = number of variables. 

For example, L4 2^3 design consists of up to 3 factors at 2 levels each. 
There are 4 rows.

Statistical designs can be developed with process variables with 
several levels. In a biological research setup, two or three-level designs 
are the most common. The L18 Taguchi design widely used for its 
simplicity and ease. When a Taguchi design is created, the 
experimental levels of each variable replace the old data while storing 
the current one. 

While 2-level factorial designs account for the main effects, multi-
level factorial designs analyze the main effects as well as the 
interaction effects, using 3 to 5 level factorial designs. Employing 
Central Composite Design (CCD), under the umbrella of factorial 

5design, fractional factorial generates a table with runs equal to 2  = 32, 
while the full factorial generates even more runs (~50; mostly center 
point replicates/duplicates for higher efciency and to assess lack of 
model t due to curvature). Normally a fractional factorial set-up is 
sufcient for analyzing and interpreting the results in the case of any 
biotechnological process, though full factorial experiments may be 
required for Neural networks (a technique based on attached nodes 
similar to neurons in the living system. The technique requires training 
the system by repeated input and analysis. Alternatively, simple 
multilevel factorial designs permit us to develop predictive 
mathematical or statistical models that incorporate the main effects of 
each process variable/factor as well as their interactions. Table 3a lists 
the experimental design with four components for Central Composite 
Design (CCD) considered under RSM. Table 3b generates the 
experimental design with variations at 5 levels to be performed and 
response to be inserted against each trial run. 

2.1 Designs and execution of optimization experiments
Once the signicant factors are selected after screening, the next step is 
to optimize them simultaneously. To do this, a multi-level fractional 
factorial experiment is carried out. This statistical methodology is 
collectively called the Response Surface Methodology (RSM). 
Central Composite Design (CCD) is normally used for the 
optimization of microbiological/biotechnological unit operations 
under RSM. For a 3 factor CCD, varied at 5 levels; Table 3b 
demonstrates the number of runs required to optimize the participating 
factors. Once the CCD table is generated, all experiments are 
performed at random to calculate the response achieved per run. If the 
ratio of maximum to the minimum response obtained is less than 10, 
the data can be utilized without any transformation. In the example 

 INDIAN JOURNAL OF APPLIED RESEARCH 3

Volume - 14 | Issue - 02 | February - 2024 |  . PRINT ISSN No 2249 - 555X | DOI : 10.36106/ijar



shown in Table 3a, the ratio of maximum to minimum responses is <10, 
therefore, no transformation is required. The value of the response of 
each run is fed in the row corresponding to each run in the design table. 
After all the runs are completed and responses fed, the obtained data is 
analyzed for the best t model equation. The obtained responses are 
tted into different regression models, e.g. Mean, Linear, 2 Factor 
Interaction (2FI), 3 Factor Interaction (3FI), Quadratic, etc., and the 
corresponding F-value / p-value are calculated. The statistical model 
with the highest F-value shows better response tting and p-values 
below 0.05 are considered signicant. 

Response surface methodology (RSM)
Input and output of the experimental designs are used for the 
development of the model. In RSM, ANOVA is generally performed 
for the selected model shows Fischer's coefcient and p-values for all 
the participating factors and the interaction terms (Table 3 b, c). The 
individual and interaction terms with p-values higher than 0.05 and 
0.10 respectively are removed from the model, as these don't support 
hierarchy (Table 3 d, e). In biological systems, we have a prior idea 
about the crucial components, hence the inclusion or exclusion of 
factors may be considered if these don't alter the 'signicant' status of 
the overall model. 

Second most important result interpretation through RSM is the curve 
tting which generates a model equation that can be used to predict 
responses. For cell growth (Y), the constructed equation with the 
obtained responses can be depicted as: 
Y = 2.19 + 0.35*A + 0.30*B + 0.06*C + 0.27*D + 0.07*A*B -

2 20.01*A*C + 0.12*A*D + 0.14*B*D + 0.01*C*D – 0.02*A  – 0.10*B  -
2 20.02*C  – 0.13*D

Similarly, metabolite production (Y') can be depicted by
Y' = 78.9 – 3.02*A + 0.06*B + 1.40*C + 3.28*D – 11.23*A*B – 

20.89*A*C + 5.97*A*D – 3.86*B*D – 0.97*C*D – 11.48*A  – 
2 2 2\11.48*B  – 11.48*C  – 9.87*D

where A, B, C and D represent experimental factors such as Glucose 
(%-w/v), Yeast extract (%-w/v), NaCl (%-w/v) and Phosphates (%-
w/v) and the terms AB, AC, AD, BD and CD are interaction terms, 

2 2 2 2while A , B , C , D are quadratic terms in the relevant equation. As the 
p-value for interaction term BC was found to be high, showing that its 
components B and C don't interact, and the interaction term BC has 
very less effect on the product formation. Removing it from the model 
makes the equation a better t and increases the accuracy of the 
predicted conditions. If the ANOVA shows a model to be signicant 
with non-signicant 'lack of t', the model can be used to generate and 
predict responses accurately. Third important result interpretation 
RSM is the predicted responses that are generated in the form of a 2D-
contour plot or 3D surface plot (Figure 2a-e). These graphs can be 
used, to predict the responses at an innite number of the desired 
combination of factors, without performing the experiment in real 
time. This ability of RSM helps researchers to nd a real optimum, 
even if they did not perform the experiment at the exact same 
combination of factors at the desired levels. Depending on the aim of 
the experiment, one either attempts to maximize (cell growth, protein 
expression, metabolite production, recovery, etc.) or minimize a 
response (toxicity, inhibition, etc.). Using the model equation 
developed after ANOVA, one can predict the experimental conditions 
which lead to the desired results (maximum or minimum response). 
This can also be achieved by response surface graphs plotted in 
between any two factors while keeping the remaining others xed at 
their selected levels. Experimental runs are nally executed at the 
predicted conditions to verify the authenticity and accuracy of the 
model prediction. 

The solution of second-order polynomial equations
The model generated in terms of second-order polynomial equations 
can be solved by nding out the solution of this equation. it can be done 
either by mathematical analysis by doing a double regression equation 
or by using some statistical software like Minitab, Matlab etc.

Neural Network Model
ANN model contains three layers of neurons: An initial input layer that 
corresponds to the input variables; a sandwiched hidden layer and a 
nal output layer. Training and test set were prepared randomly, and a 
feed-forward back-propagation network is generally used to train the 
input variables of considered design such as CCD. Medium 
component concentrations were normalized using log-sigmoidal 
function

: m= 1/(1+ exp (-n))
n: medium component concentrations as considered in design 
m: output which act as input for the network. 

Performance of the generated network during the training program till 
the nal adaptation can also be predicted beforehand. The developed 
model can be used to obtain the optimum concentration of the input 
variables. In MATLAB, there are several methods to solve the equation 
using Genetic Algorithm, Quadratic Programming etc.

4  INDIAN JOURNAL OF APPLIED RESEARCH

Volume - 14 | Issue - 02 | February - 2024 |  . PRINT ISSN No 2249 - 555X | DOI : 10.36106/ijar



3. Quick tips
Every protein / microbial species is unique. Therefore, it's highly 
recommended that designing and selection of factors should be done 
on a case-to-case basis. 
Ÿ The selection of experimental factors should be logical. There is a 

plethora of literature available that discusses the effect of a large 
number of culture media and other components on cell growth, 
metabolite or protein production etc. 

Ÿ Existing literature can be considered as a base for designing the 
screening experiments that will quicken the optimization and 
validation process. 

Ÿ Process variables should be selected based on experimentation by 
OFAT or PB design. Random selection of process variables may 
lead to exhaustive experimentation without reaching the optimal 
conditions.

Ÿ Runs should be randomized to avoid any bias. Runs should be 
divided into 2 – 3 blocks (sets) if the number of runs exceeds the 
handling capacity. The main factors most of the time affect the 
process, but it is not necessary that all the factors interact with all 
the other factors. There can be strong, weak or no interaction 
between one or many components present in the experimental 
design space. 

Ÿ The factors in the model, with a 'not signicant' p-value, should be 
removed from the model to increase the overall accuracy of the 
model and prediction of response. If the p-values for the main 
factors are not signicant, one should reconsider the selection of 
that factor or alter the experimental range. 

Ÿ If the responses at the centre points (replicates) vary widely, either 
whole setup should be repeated, or analysis should be carried out 
after normalization of centre points. Bias arising from instruments, 
procedures should be minimized, if not removed. The difference 
between predicted vs. actual can be checked in the form of a table 
or in the form of a graph for comparing the variation (Figure 2f). 

Ÿ Each set of runs should be performed in triplicate and the obtained 
responses should be averaged out before feeding into the design 
table for analysis.

4. CONCLUSION
The optimization of biotechnological processes requires considerable 
time and labour. Researchers generally adhere to simple, easy, time 
consuming and almost obsolete methods for process and media 
optimizations, due to its straightforward approach. 

While these methods lead to optimization with pseudo – optimum 
results, the biggest shortcoming is the lack of insight into the behaviour 
of target microorganism with the process variables and the mutual 
interactions among them. Statistical methods, on the other hand, are 
quick, require less time to be executed, result in real optimum, provide 
a deep insight into the interactions among different medium 
components, as well as the relevant physical parameters, such as 
temperature, pH, oxygen saturation, viscosity, etc. 

Statistical methods like RSM and CCD employ multivariate 
regression analysis, to predict the experimental responses, at the 
innitesimal combination of the experimental variables. A researcher 
can use the statistical model or model equation to predict the desirable 
responses (either maximum or minimum or at a specied target level). 

The benets of statistical methods for any process optimization 
outweigh the ease of the classical on-factor-at-a-time approach. The 
authors hope that this article would introduce the researchers to 
statistical methods of process optimization and encourage them to 
attempt the same; without getting into many technical jargons. We 
would also be glad to assist in designing any studies based on CCD, 
RSM, etc.  

5. Steps to optimization methodology 
1. Select process variables based on the previously conducted in-house 

experiments. Components should be selected based on the 
intended use of the nal product. The purity of the components 
should be high if the product is to be considered as a drug or 
therapeutic candidate, enzymes for diagnostic use or medical use. 
If the product is to be used as a detergent component, animal feed 
or in paper and pulp processing, crude substrates can also be used. 

2. Once the components are selected, select a 2-level factorial 
experiment using PB design. 

3. Execute the runs as directed (Table 2) and feed the results 
obtained in the corresponding rows. 

4. Perform Analysis of Variance (ANOVA) to calculate the F-value 
of the model and individual components. 

5. If the model statistics show it to be signicant, select the top 4 – 5 
highly signicant process parameters (p< 0.1 or 0.05) and a higher 
F-value. Selecting more than 5 signicant variables is possible but 
that would result in a large number of runs. A large number of runs 
(~10 variables or more) may not provide signicant 
improvements. This would extend the time to optimize and may 
compromise the economy of the optimization process. 

6. Select Central composite design from the RSM section using 
Design Expert® software.

7. Select the number of factors and range as selected by the previous 
PB experiment. 

8. Once selected, proceed to the next step for the generation of the 
Response Surface Design matrix. 

9. After the design matrix is generated, perform the experiment at the 
given set of conditions. 

10. Feed the results in the corresponding runs and proceed for 
ANOVA. 

11. Check the ANOVA table and nd the p-value for the individual (A, 
B, C…etc.) and interaction (AB, AC, BC, AD, etc.) components. 

12. Find the individual components that have p-value > 0.5 and 
deselect them to make the model predictability more accurate. 

13. Proceed to the next step for 3-D response surface graph generation 
to have a bird's eye view of the experimental output. The graph 
gives a visual idea of the experimental conditions that can be 
attempted. 

14. As the next step, proceed to the optimization section, where the 
desirable conditions can be selected graphically based on the 
optimization needs. 

15. After the conditions are xed, one-click output can be generated 
with the specic value of each participating component within the 
design space.

16. The suggested conditions should be replicated, and the 
production/expression should be evaluated against the predicted 
values by the software. 
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Table 1. Table listing various Classical, Statistical Optimization 
and Artificial Intelligence techniques
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Classical Optimization Techniques
Experiment
al Design

Methodology Benets Limitations Suitability 

Borrowing Addition of 
components 
from similar 
processes.

Simple and 
easy

Too many 
options, too 
large 
experimenta
l space

Small scale 
screening

Biological 
Mimicry

Adoption of 
similar 
processes

Simple to 
execute

Restricted 
exibility

Small scale 
screening

Component 
Swapping

Removal / 
Swapping of 
components, 
one by one. 

Easy to 
perform, 
no 
expertise 
required

Interactions 
unaccounte, 
erroneous, 
non-specic 
results

Small-scale 
screening 
experiments, 

One-Factor-
at-A-Time 
(OFAT)

Change the 
level of one 
component 
while 
keeping 
others at a 
xed level.

Easy to 
apply,
Simple, 2-
D graphs 
easy to 
interpret

Lengthy, 
Erroneous, 
Interactions 
between 
components 
ignored 

Small scale 
experiments, 
Screening 
studies

Statistical Design/ Methodology 
Experiment
al Design

Methodology Benets Limitations Suitability 



Table 2(a). Table showing general2- level factorial screening 
design 

Table 2(b). Table showing the experimental design matrix for 
screening withthe 2-levelsmall factorial design. (The responses for 
growth and metabolite produced are to be added to the designated rows 
against each experiment)
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amount of 
data

hinders 
pattern 
generation. 
Can be 
inappropriat
ely applied

Support 
Vector 
Regressio
n (SVR) 

support 
vectors to 
dene a 
hyperplane 
which maps 
the 
relationship 
between the 
determinant 
variables and 
the response 
variables.

minimizes the 
structural risk 
rather than the 
empirical risk 
in the 
conventional 
neural 
networks 
is very 
effective in 
high 
dimensional 
spaces 

recommende
d when the 
number of 
dimensions is 
larger than 
the number of 
samples

Gaussian 
Process 
(GP) 
regression 
algorithm

The GP is a 
non-
parametric 
approach 
which uses a 
distribution 
over 
functions 
which is 
consistent 
with the 
observed data 
set

It can capture 
a wide range 
of relations 
between 
inputs and 
outputs. This 
uncertainty is 
not directly 
captured in 
neural 
networks

If the number 
of hidden 
layers in 
neural 
networks are 
increased to 
innite 
number a 
large number 
of neural 
networks will 
converge to 
Gaussian 
process over 
functions

Fuzzy 
logic 

It utilizes a 
series of rules 
using a fuzzy 
membership 
function. At 
rst, fuzzy 
memberships 
are dened 
which 
explains the 
level of the 
components 
(low or high) 
in a 
fermentation 
medium

When a new 
medium 
composition 
is entered in 
its program, it 
predicts the 
output of the 
fermentation

High 
mathematic
al skill is 
required.

Highly 
variable data 
is required to 
analyze

Genetic 
Algorithm
s

Uses the 
theory of 
natural 
selection

Much 
improved 
results, the 
process 
improves over 
trials

Previous 
data 
abandoned 
with every 
new 
iteration,ev
olutionary 
process

Complex for 
biologists to 
apply 
mathematical 
expertise 
needed

Placket 
Burman 
Design

Screening of 
the 
components 
at two levels 

Easy and 
simple to 
perform

A smaller 
number of 
runs, only 
two levels 
tested

Good to 
initiate the 
experimentatio
n. Gives an 
idea of crucial 
/ non-crucial 
factors.

Full 
Factorial 
Design

All 
combinations 
tested, 

Every 
possible 
combinatio
n tested

Futile 
repetitions, 
redundant 
number of 
runs 
performed

Not a practical 
approach for 
biological 
experiments

Partial 
Factorial 
Design

Runs 
performed 
with one less 
than the total 
number of 
factors

Quick, 
Short, 
Easy, 
Good 
for 
screening, 

One 2 level 
considered, 
Component 
interactions 
not 
accounted

Good for 
screening, 
Easy for 
screening 
experiments

Central 
Composite 
Design 
(CCD)

Fewer 
combinations 
(at 5 levels) 
executed 
than full 
factorial 
design, 

Estimates 
curvature 
and 
directions, 
Fewer 
runs, Easy 
to perform

Lower 
number of 
runs may 
miss some 
critical 
combination
, Lower 
coverage

Perfect for 
biological 
systems and 
optimization 
experiments, 

Box-
Behnken 
Design

Minimum 
required 
number of 
runs

Estimated 
the 
curvature 
with lower 
number of 
runs than 
CCD

Not as 
accurate as 
CCD, 
Not all 
combination
s tested

Best for 
optimization 
with fewer 
factors, good 
for stepping up 
from screening 
design

RSM - 
Multiple 
experimenta
l designs       

Polynomial 
t, Steepest 
accent, Peak 
determinatio
n, Steepest 
trail 
estimation, 
Multiple 
regression,

Wide 
application
, Peak, 
plateau and 
trough 
differentiat
ion, 

Limited to 
Plotting in 
the form of 
2-D / 3-D 
graphs. 
Only 2-
Factors can 
be 
visualized

RSM contains 
a number of 
designs suited 
to various 
experimental 
needs

Nelder 
Mead (NM) 
simplex 
method

NM simplex 
method is 
based on a 
real-
parameter 
black-box 
optimization 
method (n + 
1 dimension) 
and works 
well with 
irregular 
objective 
functions.

The NM 
simplex 
method 
generally 
gives 
signicant 
improveme
nts in the 
primary 
experiment
s and 
provide 
quick and 
satisfactor
y outputs

When the 
function 
values, are 
uncertain 
the 
estimation 
of the 
process 
parameters 
and process 
controls are 
problematic, 

Where a high 
level of 
accuracy in 
solution is not 
necessary, 

Evolutionar
y Operation 

Step by step 
training 
similar to 
crude 
Articial 
Neural 
Networks 
(ANN)

Sophisticat
ed than 
OFAT, 
analyses 
interaction 
between 
the factors.

Requires 
Mathematic
al skills

Can serve as 
starting point 
for moving 
from 
Statistical 
methods to 
ANN

Articial intelligence
Experiment
al type

Methodology Benets Limitati
ons

Suitability 

Articial 
Neural 
Networks 
(ANN)

Mimics the 
learning like 
the human 
brain

Good at 
pattern 
recognition
, accurate 
predictions
, good for 
a large 

Gaps in the 
data disturb 
the pattern 
generation. 
The 
duplicity of 
results 

Rened results 
with accurate 
results, 
comprehensive 
data 

S. No. Factor Units Type Low Level High Level
1 Glucose %-w/v Numeric -1 1
2 Yeast Extract %-w/v Numeric -1 1
3 NaCl %-w/v Numeric -1 1
4 Temperature DegC Numeric -1 1
5 pH Numeric -1 1

Factor 1 Factor 
2

Factor 
3

Factor 
4

Facto
r 5

Respons
e 1

Respon
se 2

Std. Run A: 
Glucose

B: 
Yeast 
Extract

C: 
NaCl

D: 
Tempe
rature

E: 
pH

(Growth
) R1

(Metab
olite) 
R2



Note: R1, R2: Response

Table 3(a). Table showing the factors selected and their low and 
high levels used in designing CCD experiment. 

Table 3(b). Table showing the experimental design matrix for 
optimization with CCD. (The responses for growth and metabolite 
produced are to be added to the designated rows against each 
experiment)

Table 3(c). ANOVA table for CCD (with all terms)  ANOVA for 
Response Surface (Quadratic) Model for Growth  Analysis of 
variance table [Partial sum of squares - Type III]

Note: * = Not significant; df = Degrees of freedom, 

Table 3(d).ANOVA table for CCD (with only significant terms)

Note: * = Not signicant; Df = Degrees of freedom

Table 3(e). ANOVA table for CCD for metabolite production
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(%-w/v) (%-
w/v)

(%-
w/v)

(Deg
C)

OD600
nm

(%, v/v)

12 1 +1 +1 -1 +1 -1
3 2 -1 +1 -1 -1 -1
6 3 +1 -1 +1 -1 +1
4 4 +1 +1 -1 -1 +1
5 5 -1 -1 +1 -1 -1
15 6 -1 +1 +1 +1 -1
9 7 -1 -1 -1 +1 -1
14 8 +1 -1 +1 +1 -1
8 9 +1 +1 +1 -1 -1
2 10 +1 -1 -1 -1 -1
7 11 -1 +1 +1 -1 +1
10 12 +1 -1 -1 +1 +1
1 13 -1 -1 -1 -1 +1
11 14 -1 +1 -1 +1 +1
13 15 -1 -1 +1 +1 +1
16 16 +1 +1 +1 +1 =1

Fact
or

Name Units Low 
Actual

High 
Actual

Low 
Coded

High 
Coded

Mean Std. 
Dev.

A Glucose %-w/v 0.3 1.0 -1 1 0.65 0.2
76

B Yeast 
Extract

%-w/v 0.4 1.36 -1 1 0.88 0.3
78

C NaCl %-w/v 0.3 1.0 -1 1 0.65 0.2
76

D Phosp
hate

%-w/v 0.3 1.0 -1 1 0.65 0.2
76

Response Name Analys
is

Minim
um

Maxim
um

Mean Std. 
Dev.

Ratio

Y1 Growt
h

Polyno
mial

1.256 2.757 2.032 0.366 2.1
96

Y2 Metab
olite

Polyno
mial

15.708 79.319 51.481 20.28
2

5.0
49

Sum of Mean F p-value
Source Squares df Square Value Prob > F
Block 0.014871 1 0.0148
Model 2.929469 13 0.2253 228.7704 < 0.0001 signi

cant
A-Glucose 0.6939 1 0.6939 704.4522 < 0.0001
B-Yeast 
Extract

0.496816 1 0.49681 504.3711 < 0.0001

C-NaCl 0.05758 1 0.05758 58.45554 0.0001
D
-Phosp
hate

0.398945 1 0.39894 405.0111 < 0.0001

AB 0.016884 1 0.01688 17.14031 0.0043
AC 0.000335 1 0.00033 0.340274 0.5780
AD 0.051631 1 0.05163 52.41657 0.0002
BD 0.061863 1 0.06186 62.8037 < 0.0001
CD 0.001341 1 0.00134 1.361096 0.2816
A2 0.003651 1 0.00365 3.706845 0.0956
B2 0.147308 1 0.14730 149.548 < 0.0001
C2 0.006145 1 0.00614 6.238718 0.0411
D2 0.241671 1 0.24167 245.3463 < 0.0001
Residual 0.006895 7 0.00098
Lack of 
Fit*

0.006895 3 0.00229

Pure Error 0 4 0
Cor Total 2.951235 21

ANOVA for Response Surface Reduced Quadratic Model
Analysis of variance table [Partial sum of squares - Type III]

Sum of Mean F p-value
Source Squares df Square Value Prob > F
Block 0.014871 1 0.014871
Model 2.927793 11 0.266163 279.484 < 0.0001 signi

cant
  A-Glucose 0.6939 1 0.6939 728.6289 < 0.0001
  B-Yeast 
Extract

0.496816 1 0.496816 521.681 < 0.0001

  C-NaCl 0.05758 1 0.05758 60.46173 < 0.0001
  D-Phosphate 0.398945 1 0.398945 418.911 < 0.0001
  AB 0.016884 1 0.016884 17.72856 0.0023
  AD 0.051631 1 0.051631 54.21551 < 0.0001
  BD 0.061863 1 0.061863 64.95911 < 0.0001
  A2 0.003651 1 0.003651 3.834064 0.0819
  B2 0.147308 1 0.147308 154.6804 < 0.0001
  C2 0.006145 1 0.006145 6.45283 0.0317
  D2 0.241671 1 0.241671 253.7666 < 0.0001
Residual 0.008571 9 0.000952
Lack of Fit* 0.008571 5 0.001714
Pure Error 0 4 0
Cor Total 2.951235 21

ANOVA for Response Surface Reduced Quadratic Model
Analysis of variance table [Partial sum of squares - Type 
III]

Sum of Mean F p-value
Source Squares df Square value Prob > F
Block 46.58776 1 46.58776
Model 8979.028 13 690.6945 199.6146 < 0.0001 signic

ant
  A-Glucose 51.82493 1 51.82493 14.9777 0.0061

Factor 1 Factor 2 Factor 
3

Factor 4 Respon
se 1

Respons
e 2

Std. Run A: 
Glucose

B: Yeast 
Extract

C: 
NaCl

D: 
Phosphate

Growth Metaboli
te 1

%-w/v %-w/v %-w/v %-w/v %-w/v (%, v/v)
2 1 1.00 1.36 0.30 0.30 2.06 15.71
11 2 0.65 0.88 0.65 0.65 2.19 79.32
7 3 0.30 1.36 1.00 1.00 2.16 43.44
4 4 0.30 1.36 0.30 1.00 1.98 43.24
6 5 0.30 0.40 1.00 0.30 1.42 28.60
3 6 1.00 0.40 1.00 1.00 2.25 55.59
12 7 0.65 0.88 0.65 0.65 2.19 79.32
5 8 1.00 0.40 0.30 1.00 2.06 58.08
1 9 1.00 1.36 1.00 0.30 2.16 16.25
9 10 0.65 0.88 0.65 0.65 2.19 79.32
8 11 0.30 0.40 0.30 0.30 1.26 23.63
10 12 0.65 0.88 0.65 0.65 2.19 79.32
17 13 0.65 0.88 0.06 0.65 2.08 40.53
21 14 0.65 0.88 0.65 0.65 2.19 79.32
22 15 0.65 0.88 0.65 0.65 2.19 79.32
13 16 0.06 0.88 0.65 0.65 1.58 50.49
18 17 0.65 0.88 1.24 0.65 2.23 50.06
15 18 0.65 0.07 0.65 0.65 1.44 45.30
14 19 1.24 0.88 0.65 0.65 2.76 40.31
20 20 0.65 0.88 0.65 1.24 2.30 55.48
16 21 0.65 1.69 0.65 0.65 2.43 45.52
19 22 0.65 0.88 0.65 0.06 1.41 44.43
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  B-Yeast 
Extract

0.023821 1 0.023821 0.006885 0.9362

  C-NaCl 27.12857 1 27.12857 7.840311 0.0265
  D-
Phosphate

61.09488 1 61.09488 17.65677 0.0040

  AB 418.245 1 418.245 120.8752 < 0.0001
  AC 6.345777 1 6.345777 1.833965 0.2177
  AD 118.1785 1 118.1785 34.15427 0.0006
  BD 49.54568 1 49.54568 14.31898 0.0069
  CD 7.626545 1 7.626545 2.204115 0.1812
  A2 2031.769 1 2031.769 587.1928 < 0.0001
  B2 2030.794 1 2030.794 586.9109 < 0.0001
  C2 2045.446 1 2045.446 591.1454 < 0.0001
  D2 1502.123 1 1502.123 434.1221 < 0.0001
Residual 24.22098 7 3.46014
Lack of Fit 24.22098 3 8.07366
Pure Error 0 4 0
Cor Total 9049.837 21


