1. INTRODUCTION
Tribolium castaneum is an important pest of stored wheat. It is a secondary pest. This is an omnivorous beetle with chewing mouth parts. In the grains it prefers embryo and germ portion.

- It is a major pest in the agriculture industry and highly resistant to insecticides.
- As chemical insecticide pose several hazards, need arises to search for non-toxic grain protectants. Moreover, this pest is resistant to various chemicals like malathion and phos- phine.
- Botanical insecticides seem to have a distinctive advantage being eco-friendly, bio-degradeable, non-toxic to non-target population, economic and easily available.
- It was therefore planned to screen a desert plant Tribulus terrestris belonging to family Zygophyllaceae on the percentage of damaged grains of wheat infested by Tribolium castaneum.

2. MATERIALS AND METHOD.
The test insects T. castaneum was cultured on host grains of Triticum vulgare at a temperature of 28±2°C and 70% relative humidity. Different plant parts viz. leaf, stem, root and fruit of Tribulus terrestris collected from Bikaner were used for the study. The formulations were prepared using petroleum ether (assay 74.12) and glass distilled water. Ether extracts were prepared by soxlet extraction, aqueous extracts by boiling the material in water and aqueous suspension by suspending dried powder in water. Five pairs of adult insects were released in 10 grams of grains on Triticum vulgare treated with 1 ml. of different doses which included 1, 2.5, 5 and 10% along with control and normal experimental sets.

The weight loss of grains (%) was assessed in terms of biomass by finding the differences between initial weight of the grain i.e. when five pairs of pest insects were released and the final weight of the grains taken after the emergence of new progeny of pest insects and calculated as:

\[\text{% Weight loss} = \frac{Iw - Fw}{10} \times 100 \]

Where, \(Iw \) = Initial weight (10 gram)
Fw = Final weight

The results were statistically analysed using ANOVA and t-test.
The average values for each aspect were calculated by using observations from the three replicates and compared with control and normal treatments. Here normal includes untreated grains while control includes grains treated only with the particular solvent viz; water, ether etc.
RESULTS AND DISCUSSIONS.

- The results are presented in figure 1 and ANOVA table 1, revealing the following findings:
- The weight loss indicates the quantitative loss in stored grains due to insect feeding, showing a direct relationship between insect population and weight loss.
- It was observed that in normal experimental sets in the grains infected with insect was 18.95%.
- The extracts of flower Tribulus terrestris reduced the weight loss to 0.1% - 5% as compared to 1.7% - 1.8% in control experimental sets.
- All the parts of Tribulus influenced the weight loss.

Fig.2 Photograph showing seeds of Tritricum vulgare damaged by the insect pest Tribolium castaneum

- 10% concentration of all the plant part formulations of Tribulus are effective causing minimum loss to 0.8 – 1.0%.
- Chander et al. (1992) [2] evaluate the effectiveness of turmeric powder and unrefined mustard oil in different combinations as protectant for rice grain against infestation by Tribolium castaneum.
- The present findings are in agreement with the observations of Xu et al. 1993 [3] who used four essential oils against stored product pest Sitophilus zeamais, Tribolium castaneum, Oryzaephilus surinamensis and Rhizopertha dominica and reported that 0.2% cassia oil when applied as a seed dressing kept stored wheat free from insect damage up to eight months.
- In laboratory experiment, feeding on flour treated with 15ppm caffeine or 1000ppm castor oil reduced the fecundity and fertility of Tribolium castaneum in comparison with the control reported by Akhtar and Mondal (1994) [1].
- The plant Tribulus terrestris has been screened for the first time for its insecticidal efficacy, and it may be concluded that:
- All the parts of plant Tribulus viz. leaf, stem, root and fruit are effective to be used as seed protectant against insect pest Tribolium castaneum.

REFERENCE