Correlation of Hypertension with Bmi, Dietary Habit \& Family History in Adolescents.

Dr. Jasmin J parmar

Dr. Jitendra R Patel

Dr. Jaydeep D Kagthara

III year Resident in Physiology, Smt NHL municipal medical college, Ahmedabad-6, Gujarat-India.

III year Resident in Physiology, Smt NHL municipal medical college, Ahmedabad-6, Gujarat-India.

Tutor, Dept. of Physiology, GCS medical college, Ahmedabad-25,Gjuarat-india

ABSTRACT

Prevalence of Hypertension is significantly increased in adolescents in India. So this study was undertaken to correlate the hypertension with BMI, dietary habit and family history of hypertension in adolescents. Age, diet, family history of hypertension, weight and height were recorded and Body Mass Index (BMI) was calculated from height and weight. BMI was distributed by criteria of WHO. Blood pressure was measured and classified as per the Seventh Report of the Joint National Committee, Geneva. The data was analyzed using chi-square test to find association between hypertension and variables. The results show that increase \% of hypertension subjects having BMI>25, mixed dietary habit \& positive family history. So, early modification in these variables can be very useful in decreasing the future prevalence of hypertension.

INTRODUCTION:

Prevalence of Hypertension in adolescents is around 3.5\% worldwide with somewhat higher rates of pre-hypertension. Obesity affects approximately 20% of adolescents in the United States, and the prevalence of hypertension is much higher among obese adolescents compared with nonobese adolescents (Joseph T. Flynn \& 1 Bonita E. Falkner, 2011). Similarly, non-vegetarian food increases Mortality and incidence rates of coronary disease events are indeed clearly lower in vegetarians (fraser, 2009). Impairment in baroreflex sensitivity in hypertension is in part genetically determined and may be an important hereditary component in the pathogenesis of essential hypertension(Robert J. Parmer, Justine H. Cervenka, \& and Richard A. Stone, 1992), so the positive family history of hypertension also increase prevalence of hypertension in adolescents. So we attempt to study the prevalence of hypertension in hundred medical students in ahmedabad.

AIMS \& OBJECTIVES:

To correlate the hypertension with BMI, dietary habits and family history of hypertension in adolescents To compare the prevalence of hypertension in male and female

MATERIALS \& METHOD:

Present study was undertaken in 100 medical students at Ahmedabad. Out of 100 students 45 were female \& 55 students were male with age group between 18 to 19 years. Students were informed about study.

Inclusion criteria:

Age group: 18-19(years).
Subjects who definitely know their family history

Exclusion criteria:

Age group above 19 years and below 18 years Uncooperative subjects Age, diet and family history of hypertension were recorded. We excluded subjects who didn't know their family history of hypertension and also uncooperative subjects. Weight and height was measured to calculate Body Mass Index (BMI) Using the BMI criteria of WHO (WHO. Physical status: the use and interpretation of anthropometry, 1995) The study subjects were categorized as underweight (BMI <18.5), normal (18.524.9), overweight (25.0-29.9) and obese (>30). Blood pressure measured by using sphygmomanometer in supine position. Out of three reading the average reading has been recorded for measurements. We classified blood pressure according to the Seventh Report of the Joint National Committee where Prehypertension is systolic BP (SBP) of $120-139 \mathrm{mmHg}$ or diastolic BP (DBP) of $80-89 \mathrm{mmHg}$ and Hypertension stage 1 is SBP of 140-159 or DBP of $90-99 \mathrm{mmHg}$ (Aram V Chobanian, 2003). Subjects were informed about the study. Dietary habit included
either they were vegetarian or taking mixed (vegetarian \& nonvegetarian) diet. Family history includes either they have positive or negative family history.

STATISTICAL ANALYSIS:

Mean BP were computed for weight, height, BMI and blood pressure, data was analyzed using chi-square test to find association between hypertension and variables (BMI of <25 \& BMI >25, diet -vegetarian and non-vegetarian and or absence of family history of hypertension). Those found to be significantly associated with hypertension ($\mathrm{P}<0.05$) were then entered in multiple logistic regression.

OBSERVATION AND RESULTS:

TABLE 1: Values of different variables with respect to different stages of Hypertension.

Number (100)	NORMAL	PRE-HT	HT STAGE-I	
N	35	41	24	
Blood pressureMean \pm SD				
SBP (mmhg)	112.16 ± 3.81	125.29 ± 5.67	144.36 ± 5.94	
DBP (mmhg)	72.20 ± 5.61	82.06 ± 3.09	91.18 ± 2.28	
BMI (n) kg/m2				
<25	32	35	14	
>25	3	6	10	
DIET (n)				
Veg	28	29	12	
Mixed	7	12	12	
FAMILY HISTORY (n)				
Positive	11	20	13	
Negative	24	21	11	

(HT= Hypertension)
TABLE 2: Respective P-values \& Unadjusted Odds Ratio for different variables

Variable	Code	n \& \% of HT	Unadjusted OR (95\% CI)	P -value
$\begin{aligned} & \mathrm{BMI} \mathrm{~kg} / \\ & \mathrm{m} 2 \end{aligned}$	<25=0	($\mathrm{n}=81$) 49 (60.49\%)	1	0.06
	$>25=1$	($\mathrm{n}=19$) 16 (84.25\%)	3.48	
DIET	$\mathrm{Veg}=0$	(n=69) 41 (59.42\%)	1	0.1
	Mixed=1	($\mathrm{n}=31$) 24 (77.41\%)	2.34	
FAMILY HISTORY	-ve=0	($\mathrm{n}=56$) 32 (57.14\%)	1	0.07
	+ve=1	($\mathrm{n}=44$) 33 (75.00\%)	0.44	

HT = Hypertension, OR = Odds Ratio, $\mathrm{CI}=$ Confidence Interval. P value <0.05 is significant

TABLE 3: comparison of male and female with different variables

VARIABLE	MALE (n=55)	FEMALE (n=45)
NORMAL OR HTN		
NORMAL	18	17
HYPERTENSION	37	28
BMI kg/m2		
<25	40	41
>25	15	4
DIET	34	
Veg	21	10
Mixed		
FAMILY HISTORY	26	18
Positive	29	22
Negative		

TABLE 4: comparison of BMI >25 with hypertensive male and female

BMI >25 $(\mathrm{n}=19)$	MALE $(\mathrm{n}=15) \& \%$	FEMALE $(\mathrm{n}=4) \& \%$	p value
HYPERTENSION	$12(80 \%)$	$3(75 \%)$	NS

TABLE 5: comparison of mixed diet with hypertensive male and female

MIXED DIET	MALE (n=21) \& \%	FEMALE $(n=10) \& \%$	p value
HYPERTENSION	$17(80.95 \%)$	$7(70 \%)$	NS

TABLE 6: comparison of positive family history with hypertensive male and female

POSITIVE HISTORY	MALE $(n=26) ~ \& ~ \% ~$	FEMALE (n=18) \& \%	p value
HYPERTENSION	$20(76.92 \%)$	$13(72.22 \%)$	NS

TABLE 1 shows that according to JNC-VII criteria, 41% students were pre-hypertensive while 24% were in hypertension stage-1. 19 students had >25 BMI, out of which 6 were in prehypertension and 10 had stage-1HT. 31 students were taking mixed diet out of which 12 were in pre-HT \& 12 were in stage-1 HT. 44 students had positive family history out of which 20 were in pre-HT \& 13 were in stage- 1 HT.

Since the Stage 1 hypertension had 24 subjects, we clubbed the subjects of pre-hypertension and stage 1 hypertension into a single group for appropriate statistical analysis.

TABLE 2 shows the respective P-values and Odds Ratio for BMI, diet and family history. here All three variables were not found to be significant after the application of Chi-square test, but \% of hypertension was high with >25 BMI, mixed diet and positive family history of HT containing subjects.

TABLE 3 shows comparison of male and female with different variables in which out of 45 female \& 55 male, 28 female and 37 male were hypertensive, 4 female \& 15 male had >25 BMI, 10 female \& 21 male were on mixed diet, 18 female \& 26 male had positive family history.

REFERENCE

A k h i l Kant Singh, A. n. (2006). Lifestyle Associated Risk Factors in Adolescents. Indian Journal of Pediatrics , 73 (10), 901-906. | Aram V Chobanian, G. L. (2003). Seventh report of the Joint National Committee on prevention, detection, evaluation and treatment of High blood pressure. | craig, w. j. (2010). Nutrition Concerns and Health Effects of Vegetarian Diets. nutrition in clinical practice, 25 (6), 613-620. | fraser, g. e. (2009). Vegetarian diets: what do we know of their effects on common chronic diseases? the american journal of clinical nutrition, 89 (5), 16075-125. | Jacobs DR, A. J. (1979). Diet and serum cholesterol: do zero correlations negate the relationship? Am J Epidemiol , 110, 77-87. | Joseph T. Flynn, M. M., \& 1 Bonita E. Falkner, M. (2011). Obesity Hypertension in Adolescents: Epidemiology, Evaluation, and management. The journal of clinical hypertension , 13 (11), 323. | katrina r more, A. j. (2012). Mindful Eating and Its Relationship to Body Mass Index and Physical Activity Among University Students. mindfullness , 1. | P. HILBERT* \dagger, K. L. (1991). Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. nature, 353, 521-529. | R J Parmer, J. H. (1992). Baroreflex sensitivity and heredity in essential hypertension. the journal of american heart association circulation , 85, 497-503.| Robert J. Parmer, M., Justine H. Cervenka, R., \& and Richard A. Stone, M. (1992). Baroreceptor sensitivity and heredity in essential hypertension. circulation. american journal of heart association, 85 (2), 497-503. | School stress in India: Effects on time and daily emotions. (2002). international journal of behaviroal devlopemant , 26 (6), 500-508. | Watt GC, H. S. (1992;). abnormality of glucocorticoid metabolism and the reninangiotensin system: a four-corners approach tothe identification of genetic determinants of blood pressure. J Hypertens , 10 (5), 473-482. | (1995). WHO. Physical status: the use and interpretation of anthropometry. WHO Technical Report Series 854., world health organisation, geneva. |

