Situational analysis of malaria in Ahmedabad city (India)

Dr Urvish Joshi
Assistant Professor, Dept of Community Medicine, AMC MET Medical College & LG Hospital, Ahmedabad

Dr Anand Solanki
Assistant Professor, Dept of Community Medicine, AMC MET Medical College & LG Hospital, Ahmedabad

Dr Margeyi Mehta
Assistant Professor, Dept of Biochemistry, Govt. Medical College and SSG Hospital, Vadodara

Dr Rajashree Bhatt
Assistant Professor, Dept of Community Medicine, BJ Medical College & Civil Hospital, Ahmedabad

Dr Umesh Oza
Associate Professor, Dept of Community Medicine, AMC MET Medical College & LG Hospital, Ahmedabad

Dr Sheetal Vyas
Professor & Head, Dept of Community Medicine, AMC MET Medical College & LG Hospital, Ahmedabad

Dr Bhavesh Modi
Assistant Professor, Dept of Medicine, PDU Medical College & Hospital, Rajkot

Dr Leena Dabhi
Associate Professor, Dept of Medicine, AMC MET Medical College & LG Hospital, Ahmedabad

ABSTRACT
Introduction Malaria is one of the major public health problems in India. Malaria cases are on rise in major cities including Ahmedabad owing to rapid urbanization, industrialization and humidity. Monsoon patterns are changing due to global warming. Present study was carried out to analyze the situation of malaria in 2011 in selected wards of Ahmedabad in purview of NVBDCP. Methodology Field areas (urban slums) catered under public health service delivery of total 3 wards of south and east zones under AMC (population worth about 3 lakhs) were selected based on systematic random sampling. Situational analysis was done based on the locally adapted tool from national guidelines. Results More than 95% of smears were positive for P. vivax parasite with highest total positivity reporting from Isanpur (38.24%). Parasite incidence was highest in Danilimnda (0.64 per 1000). RT completion was least in Amraiwadi (51.11%). Procurement of contact smears was not a uniform practice. The SPR was highest in Isanpur for both active and passive surveillance (7.14% and 2.11% respectively). MBER was highest throughout in Danilimnda and lowest in Isanpur. Results were conveyed to the patients within 24 hours by all laboratories except the one of Danilimnda ward. ACT packs for children were not available at Amariawadi. No injectable medicines were available at any of the centres. Knowledge about dilution process of the abate solution amongst link workers was faulty. ConclusionAPI more than 2 is an indication for starting IRS activities. Urgent measures are required to improve MBER and eventually ABER. Incomplete RT owing to loss of follow-up issues needs to be addressed with implementation of line-listing. Area of contact smears need to be emphasized upon. The slide positivity rate of active surveillance is significantly lower suggesting poor quality of active surveillance. Quality assurance of blood smear examination should be more stringent. Sufficient stock of medicine has to be ensured at all the centres specially during high transmission season.

Introduction
Malaria is one of the major public health problems in India. Malaria cases are on rise in major cities including Ahmedabad owing to rapid urbanization, industrialization and humidity. Monsoon patterns are changing due to global warming. Present study was carried out to analyze the situation of malaria in 2011 in selected wards of Ahmedabad in purview of NVBDCP. Methodology Field areas (urban slums) catered under public health service delivery of total 3 wards of south and east zones under AMC (population worth about 3 lakhs) were selected based on systematic random sampling. Situational analysis was done based on the locally adapted tool from national guidelines. Results More than 95% of smears were positive for P. vivax parasite with highest total positivity reporting from Isanpur (38.24%). Parasite incidence was highest in Danilimnda (0.64 per 1000). RT completion was least in Amraiwadi (51.11%). Procurement of contact smears was not a uniform practice. The SPR was highest in Isanpur for both active and passive surveillance (7.14% and 2.11% respectively). MBER was highest throughout in Danilimnda and lowest in Isanpur. Results were conveyed to the patients within 24 hours by all laboratories except the one of Danilimnda ward. ACT packs for children were not available at Amariawadi. No injectable medicines were available at any of the centres. Knowledge about dilution process of the abate solution amongst link workers was faulty. ConclusionAPI more than 2 is an indication for starting IRS activities. Urgent measures are required to improve MBER and eventually ABER. Incomplete RT owing to loss of follow-up issues needs to be addressed with implementation of line-listing. Area of contact smears need to be emphasized upon. The slide positivity rate of active surveillance is significantly lower suggesting poor quality of active surveillance. Quality assurance of blood smear examination should be more stringent. Sufficient stock of medicine has to be ensured at all the centres specially during high transmission season.

Vectors for malaria are species of anopheline mosquitoes. Generally, the vector breeding increases during transmission seasons which is considered to be the rainy season. Transmission season for malaria in the city of Ahmedabad is believed to be from May to August. Monsoon patterns in the country are changing which might be the result of global warming. With changing trends in monsoons, breeding patterns of vectors are also assumed to be changing. Radical treatment of malaria cases in accordance with national guidelines is the mainstay to curb the menace.

Present study was carried out to analyze the situation of malaria in selected wards of 3 zones of Ahmedabad city in context of national guidelines.

METHODOLOGY
Study design, area and duration
Almost 6 million of population of the metro city of Ahmedabad is catered by 6 different geographical zones. More than half of
the city population is slum. Ahmedabad Municipal Corporation (AMC) takes care of the healthcare service delivery in these areas through Urban Health Centers (UHCs). Private practitioners also render their services to the population.

Field areas catered under public health service delivery from randomly selected two zones of AMC namely South and East were covered in the surveillance activities based on systematic random sampling. Selection of wards was in accordance with procured information from the local health authorities about high-malaria case reporting in previous 2 quarters. The surveillance data were collected from September 2011 onwards from Isanpur & Danilimda wards of South Zone and Amraiwadi ward of East Zone of AMC.

All field practice areas of the UHCs were visited by the medical professionals with entomological expertise of AMC MET Medical College and LG Hospital (Ahmedabad).

Study tool

The tool which was used for surveillance purpose was adopted from NVBDCP operational guidelines manual with modifications wherever required as per local scenario. Local healthcare machinery including administrative and service delivery personnel were contacted and interviewed.

Study variables

Radical treatment, malariometric indices, logistics in malaria programme, mosquito breeding

Analysis

Data entry was done in MS Excel and analysis was carried out in MedCalc v10.

RESULTS

Majority (96.7%) of smears in all the surveyed wards were positive for P. vivax parasite. No case of mixed infections was reported.

Highest total positivity was reported from Isanpur (38.24%), followed by Amraiwadi (34.19%). P. vivax proportions remained the same in ward-wise distribution. P. falciparum was reported highest in Isanpur (44.44%).

Cumulative statement of blood smears examined and positive for PvVax and P. falciparum from April onwards in the wards visited is given in Table 1.

Table 1: Cumulative statement of blood smear examined, Pv% and Pf% (April to Sept. 2011)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Ward</th>
<th>Blood smears examined</th>
<th>Total positive</th>
<th>Pv positive</th>
<th>Pf positive</th>
<th>Parasite incidence</th>
<th>Status of Radical Treatment in Pv cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Isanpur</td>
<td>3123</td>
<td>104</td>
<td>100</td>
<td>100</td>
<td>4</td>
<td>0.60 per 1000 population</td>
</tr>
<tr>
<td>2</td>
<td>Danilimda</td>
<td>8885</td>
<td>75</td>
<td>73</td>
<td>73</td>
<td>2</td>
<td>0.64 per 1000 population</td>
</tr>
<tr>
<td>3</td>
<td>Amraiwadi</td>
<td>2429</td>
<td>93</td>
<td>90</td>
<td>90</td>
<td>3</td>
<td>2.1 per 1000 population</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14437</td>
<td>272</td>
<td>263</td>
<td>263</td>
<td>9</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Parasite incidence for the period of April to September for all the wards showed that Amraiwadi ward had parasite incidence of more than 2.

92.9% patients completed RT in South Zone. RT was given in 51.11% of the total Pv cases in Amraiwadi while it was given to all Pv cases in Isanpur. Major reasons for non-completion of RT were referral to other ward, migration and private hospitalization. (Table 1) The details of the patients who received radical treatment in last one month were collected by personal interview in field.

Contact smears were taken in the Isanpur ward but in rest of the wards either they were not taken or were taken for few cases only. The practice of obtaining follow-up smear from the case of malaria was found inadequate.

The slides collected by active and passive surveillance and their positivity were as per Table 2. The SPR by passive surveillance in all surveilled wards ranged between 2.41% to 7.14% with highest in Isanpur ward. SPR of active surveillance ranged between 0% to 2.11% which is much lower.

Table 2: Active v/s passive surveillance for blood smear examination (April to Sept. 2011)

<table>
<thead>
<tr>
<th>Ward</th>
<th>Active surveillance</th>
<th>Passive surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Examined</td>
<td>No. Positive</td>
</tr>
<tr>
<td>Isanpur</td>
<td>2367</td>
<td>50</td>
</tr>
<tr>
<td>Danilimda</td>
<td>5774</td>
<td>0</td>
</tr>
<tr>
<td>Amraiwadi</td>
<td>1122</td>
<td>7</td>
</tr>
</tbody>
</table>

Monthly Blood examination rates (Active as well as passive surveillance) for all the three wards are as shown in chart I. Isanpur and Amraiwadi wards are having very low MBER as against the norm of 1.2% during transmission season (as per NVBDCP guidelines).

All the laboratories were checked as per guidelines of NVBDCP and all were found well-equipped as per those guidelines. Results were conveyed to the patients within 24 hours by all laboratories except the one of Danilimda ward (66.7% for south zone). Backlog of slide in south zone was reported to be 33.33%. There was no written documentation of the slides sent for cross-checking (All positive and 2% of negative slides) as per interview of the laboratory technicians. The results were not conveyed in writing to the urban health centres by cross-checking facilities. However, discrepancy rate was 0% for south zone.

Among the drug stock verified, ACT packs for children were not available at Amraiwadi. No injectable medicines were available at any of the centres. Tablet chloroquine stocks were sufficient at all the urban health centres. At Amraiwadi, primaquine tablets for adults were not available.

Link workers were not aware about dilution process of the abate solution which is provided to them but MHW could demonstrate the same.

Chart 1: Ward-wise Monthly Blood Examination Rate (MBER%) for the study quarter

All field practice areas of the UHCs were visited by the medical professionals with entomological expertise of AMC MET Medical College and LG Hospital (Ahmedabad).
CONCLUSION
API more than 2 is an indication for starting IRS activities. However in all the wards the slum areas having API more than 2 should be identified for IRS activities. Urgent measures are required to improve MBER and eventually ABER which can give clear ideas about API and the progress made.

Incomplete RT owing to loss of follow-up issues can be taken care of by noting full address of patients, other contact details and following transfer in and out strategy as it is there in RNTCP. Defaulter can be minimized by follow-up of patients even in other wards.

Contact smears are quintessential in terms of complete treatment and thorough cure. Inadequacy of the same needs to be addressed and this part of the program needs emphasis.

The difference in slide positivity rate between active and passive surveillance is statistically highly significant. The slide positivity rate of active surveillance is significantly lower suggesting poor quality of active surveillance. The faulty smear collection, storage and transportation are probably responsible for this as was obvious from the real-time observations.

Maintaining the quality MBER of 1.2% during high transmission season and 0.8% during rest of the year by active and passive surveillance can give us clear picture of parasite incidence and early detection of cases from the community.

The reporting and documentation of cross-checking can be improved and some random number can be given every month for selecting negative slides for cross-checking.

Sufficient stock of medicine has to be ensured at all the centres specially during high transmission season. Better liaison with CMSO for that matter is required.

Sensitization of the private practitioners, intensive active surveillance, regular field visits by peripheral staff, community awareness and early referral are possible solutions to this.

Aggressive IEC/BCC measures to sensitize the local slum population towards vector borne diseases are required.

STUDY LIMITATION
The study population comprised only that of the urban slums. Studies covering non-slum population also should be carried out in order to have a broader picture for effective control of vector-borne diseases.

ACKNOWLEDGEMENT
We acknowledge the support of all concerned healthcare functionaries of Ahmedabad Municipal Corporation towards the study completion.

CONFLICT OF INTEREST
Nil. The study was neither funded nor financially assisted by any organization or agency.

REFERENCE