Imidacloprid-Induced Nephrotoxicity in Male Rats

S. Soujanya
Department of Veterinary Pathology, College of Veterinary Science, Rajendranagar, Hyderabad 500 030, Andhra Pradesh, INDIA

M. Lakshman
Department of Veterinary Pathology, College of Veterinary Science, Rajendranagar, Hyderabad 500 030, Andhra Pradesh, INDIA

ABSTRACT
Protective role of vitamin C was assessed against imidacloprid-induced nephrotoxicity. Forty eight male Sprague dawley rats were divided into four groups of 12 animals in each. Group 1 served as control, while groups 2 and 4 were administered with imidacloprid (80 mg/kg b.wt) daily by oral gavage for 28 days. In addition to imidacloprid, group 4 also received vitamin C @ 10 mg/kg/oral daily for 28 days. Group 3 was maintained as vitamin C control (dose as above). At the end of 14th day, six rats from each group and the remaining at the end of 28th day were sacrificed. Blood samples were collected before sacrifice for sero-biochemical analysis. In group 2, a significant (P<0.05) increase in serum creatinine and decrease in GSH concentration in kidney was observed. In group 2, histological examination revealed pathologically significant changes. Co-treatment with vitamin C significantly (p<0.05) reversed the imidacloprid-induced nephrotoxicity.

INTRODUCTION
Imidacloprid, a neonicotinoid insecticide, is extensively used in agriculture for control of the sucking insects and coleopteran beetles (Cox, 2001) and also used as foliar treatment for soil and for seed dressing (Felsot, 2001). In Veterinary Medicine, it is used as flea control agent on dogs and cats (Hutchinson, Jacobs and Mencke, 2001). It is one of the fastest sold insecticide across the world because of its high selectivity in insects and apparent safety in humans. It acts on nervous system by blocking post synaptic acetylcholine receptors, which kills the insect (Tomizawa, Lee and Casida, 2005).

Vitamin C plays an important role in protection against insecticide-induced toxicity as an antioxidant agent and prevents the effect of free radicals on vital cells (Abd-El-Ghaney, 2005). Present study was conducted to evaluate the serum biochemical, tissue antioxidant, histopathological alterations induced by imidacloprid in kidney of male rats and protective role of vitamin C against imidacloprid-induced toxicity was also assessed.

MATERIALS AND METHODS
Chemicals
Imidacloprid was procured from GSP crop science Pvt. Ltd., Gujarat and Vitamin C was obtained from Abbott Health Care Pvt. Ltd., Bhivandi.

Animals
Forty eight male Sprague dawley rats weighing 200-250 g were procured from National Institute of Nutrition (NIN), Hyderabad. The experiment was conducted as per CPCSEA guidelines and approved by the Institutional Animal Ethics Committee (Approval No. 1 / 3 / 2012). The rats were housed at lab animal house in the Department of Pharmacology & Toxicology, College of Veterinary Science, Hyderabad and were maintained in controlled environment (Temperature 20-22°C). All the rats were provided ad libitum with standard pellet diet (procured from NIN) and water throughout the experimental period.

Experimental design
Following an acclimatization period of one week, the animals were divided into four groups consisting of 12 in each. Group 1 served as control, group 2 treated with imidacloprid at the rate of 80 mg/kg b.wt, group 3 was treated with vitamin C at the rate of 10 mg/kg b.wt and group 4 was treated with both imidacloprid and vitamin C. These drugs were administered by oral gavage every day consequently for 28 days. At the end of 14th day, six rats from each group and remaining at the end of 28th day were sacrificed by cervical dislocation. Before sacrifice, blood was collected from retro-orbital plexus for studying serum creatinine levels.

Sero-biochemical markers
Creatinine was estimated in serum by using the standard diagnostic kits.

Antioxidant markers
Reduced glutathione (GSH) was estimated based on a reaction of reduced glutathione with 5,5-ditiobis-2-nitrobenzoic acid (DTNB) (Moron, Depierre and Mannervik, 1979).

Histopathology
For histopathological examination, the formalin fixed tissues were dehydrated through ascending grades of alcohol, cleared in xylene and embedded in paraffin. 5-micron thickness sections were cut and stained with H and E as per standard protocols (Luna, 1968).

Statistical analysis
The data were subjected to statistical analysis by applying one way ANOVA. Differences between means were tested using Duncan’s multiple comparison test and significance was set at P < 0.05.

RESULTS
In group 2, a significant (p<0.05) increase in mean values of creatinine (2.40 ±0.05 mg/dl) and reduction in GSH concentration (203.26 ± 0.18 µM/mg protein) was observed on day 14 and a similar trend was observed on day 28 following imidacloprid administration. Co-administration of vitamin C significantly (p<0.05) reversed the above values (Table 1).

H and E sections of kidney in imidacloprid treated group revealed cystic dilation of tubules, shrunken glomeruli [Fig. 1], vacuolation, presence of moderate inter tubular haemorrhages [Fig. 2] on 14th day, haemorrhages in glomeruli [Fig. 3] and hyaline casts [Fig. 4] on day 28. In group 3, no lesions of pathological significance were observed, whereas in group 4 animals, few inter tubular haemorrhages and vacuolation inside the tubules [Fig. 5] were observed.

DISCUSSION
In the present study, reduced GSH concentration was observed in group 2. This signifies the generation of free radicals that induced oxidative stress following imidacloprid treatment and this might be attributed to direct utilization of GSH as an antioxidant in terminating the free radical reaction resulting in exhaustion of the GSH, which was evident from significant increase in serum creatinine levels, histological alterations of pathological significance in kidneys of group 2 animals.

In group 2, kidney sections revealed cystic dilation of tubules, shrunken glomeruli, vacuolation, inter tubular haemorrhages and hyaline casts. These results are in accordance with earlier studies.
research reports (Bhardwaj, Srivastava, Upasana and Srivastava, 2010) & (Kammon, Brar, Banga and Sodhi, 2010).

Vitamin C plays primary role in neutralizing free radicals. The free radicals will seek out an electron to regain their stability, vitamin C is an excellent source of electrons so it can donate electrons to free radicals such as hydroxyl and superoxide radicals and quench their reactivity (Bindhumol, Chitra and Mathur, 2003). In the present study, supplementation of vitamin C brought moderate protection in all the above parameters. The results of the present study were in agreement with previous studies, where supplementation of vitamin C brought improvement in histo architecture of kidney in Japanese quail (Omiama, 2004).

CONCLUSION

In conclusion, the study revealed that exposure to imidacloprid (80 mg/kg) in male rats affected renal function, which was evident from biochemical, tissue antioxidant, histological alterations in kidney. However, vitamin C supplementation along with imidacloprid to rats, manifested significant protective effects.

Table 1: Effect of vitamin C on serum biochemical and tissue antioxidant (GSH) parameters against imidacloprid induced toxicity in male rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Serum Creatinine (mg/dl)</th>
<th>GSH Concentration in kidney (µM/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14th day</td>
<td>28th day</td>
</tr>
<tr>
<td>1</td>
<td>1.36 ± 0.01c</td>
<td>1.44 ± 0.01c</td>
</tr>
<tr>
<td>2</td>
<td>2.40 ± 0.05a</td>
<td>2.81 ± 0.03a</td>
</tr>
<tr>
<td>3</td>
<td>1.40 ± 0.02c</td>
<td>1.49 ± 0.01c</td>
</tr>
<tr>
<td>4</td>
<td>1.91 ± 0.04b</td>
<td>2.25 ± 0.07b</td>
</tr>
</tbody>
</table>

Values are mean ± SE; n=12; One way ANOVA Means with different superscripts differ significantly (P<0.05).

Figure 1: Photomicrograph of kidney showing cystic dilation of tubules and shrunken glomeruli (Group 2, day 14): H&E X200

Figure 2: Photomicrograph of kidney showing haemorrhages in glomeruli (Group 2, day 28): H&E X200

Figure 3: Photomicrograph of kidney showing haemorrhages in glomeruli (Group 2, day 28): H&E X200

Figure 4: Photomicrograph of kidney showing hyaline casts, degenerated tubular epithelium and vacuolation in tubules (Group 2, day 28): H&E X200

Figure 5: Photomicrograph of kidney showing few inter tubular haemorrhages and vacuolation inside the tubules (Group 4, day 28): H&E X 200

REFERENCE