# Synthesis and Characterization of Lead Chromate nanoparticles



# Physics

KEYWORDS: XRD, SEM, FTIR, UV, AAS.

| * Mrs. R. Hepzi Pramila<br>Devamani | Assistant Professor of Physics, V.V.Vanniaperumal College for Women, Virudhunagar * corresponding author |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| M. Jansi Rani                       | M.Sc Student, Department of PG Physics, V.V.Vanniaperumal College for Women, Virudhunagar                |  |

# ABSTRACT

Lead chromate nanoparticles were synthesized via chemical co-precipitation method from lead chloride and potassium chromate. The formed nanoparticle is characterized by powder x-ray diffraction, scanning electron microscopy, ultra-violet spectroscopy and fourier transform infrared spectroscopy, confirmed the preferential growth of lead chromate nanoparticles that width is 70.423nm. The SEM image shows the synthesized lead chromate show well crystallized particles with tetrahedral morphology. The FTIR spectrum is used to study the stretching and bending frequencies of molecular functional groups in the sample. From UV spectrum, the band gap of lead chromate nanoparticles is found to be 4.4eV.

### 1.Introduction

Nanotechnology represents a rather broad interdisciplinary field of research and industrial activity involving particles less than 100 nanometers (nm) in diameter. Engineered materials made of such small particles exhibit novel properties that are distinctively different from their conventional forms and can affect their physical, chemical, and biological behavior. These nanoscale particles can be tubular (nanotubes), spherical, irregularly shaped, and may also exist in aggregated formations.

Nanoparticles have one dimension that measures 100 nanometers or less. Nanoparticles have a greater surface area per weight than larger particles which causes them to be more reactive to some other molecules. Nanoparticle research is currently an area of intense scientific interest due to a wide variety of potential applications in biomedical, optical and electronic fields. Nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic or molecular structures. A bulk material should have constant physical properties regardless of its size, but at the nano-scale sizedependent properties are often observed. Thus, the properties of materials change as their size approaches the nanoscale and as the percentage of atoms at the surface of a material becomes significant. For bulk materials larger than one micrometer (or micron), the percentage of atoms at the surface is insignificant in relation to the number of atoms in the bulk of the material. The interesting and sometimes unexpected properties of nanoparticles are therefore largely due to the large surface area of the material, which dominates the contributions made by the small bulk of the material [1].

Lead Chromate is used as a pigment in oil and water colors and is used in printing fabric. It is also used in the chemical analysis of organic materials and as a constituent in pyrotechnic compositions. This paper is discussing about easy, simple and low cost preparation i.e. chemical co-precipitation of lead chromate nanoparticles and its characterizations - XRD, SEM, FTIR, UV and AAS studies.

### 2. Materials and Methods

Nanoparticles of lead chromate were prepared by chemical coprecipitation method by adding lead chloride and potassium chromate. Precise amounts of reagents taking into account their purity were weighed and dissolved separately in distilled water into 0.1M concentration. After obtaining a homogeneous solution, the reagents were mixed using magnetic stirring. The precipitate was separated from the reaction mixture and washed several times with distilled water and ethanol. The wet precipitate was dried and thoroughly ground using agate mortar to obtain the samples in the form of fine powder.

### 3. Tests Conducted

X-ray diffraction is an ideal technique for the determination of crystallite size of the powder samples. The basic principle

for such a determination involves precise quantification of the broadening of the peaks. XRD line broadening method of particle size estimation was chosen in this investigation for determining the crystallite size of the powder sample. XRD study of the powder samples was carried out at Alagappa University, Karaikudi. The morphology of the powder samples was studied by the scanning electron microscope (SEM) analysis taken at STIC Cochin. The infra red spectroscopic (IR) studies of lead chromate nanoparticles were made by using 'SHIMADZU' FTIR 8400S model spectrometer through KBr method. The UV spectrum was taken in the absorbance mode in the wavelength range from 200 to 800 nm.

### 4. Results and discussion

#### 4.1. XRD studies

### 4.1.1.XRD-Particle Size Calculation

The XRD patterns of the prepared samples of lead chromate are shown in figure.1. XRD studies reveal that the samples are nano sized and crystalline. The fine particle nature of the samples is reflected in the x-ray line broadening. The size of the synthesized lead chromate nano particles are calculated using Scherrer equation

 $D = 0.9 \,\lambda \,/\,\beta \,\cos\!\theta$ 

where  $\lambda$  represents wavelength of X rays,  $\beta$  represents half width at full maximum and  $\theta$  is the diffraction angle [2]. The average grain size of the particles is found to be 70.423nm.

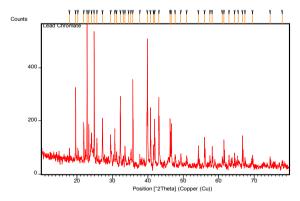



Figure.1 XRD pattern of lead chromate nanoparticles

A good agreement between the experimental diffraction angle [2 $\theta$ ] and standard diffraction angle [2 $\theta$ ] of specimen is confirming standard of the specimen. The peaks at  $2\theta$  values of lead chromate is observed and tabulated in table.1 and compared with the standard powder diffraction card of Joint Committee on Powder Diffraction Standards (JCPDS), lead chromate file No. 74-2304. The d-spacing values of experimental is also confirming to the standard values.

Table.1. Experimental and standard diffraction angles of lead chromate specimen.

|                                         | -F            | a. 1 1 raps                             | 2271 2221     |
|-----------------------------------------|---------------|-----------------------------------------|---------------|
| Experimental                            |               | Standard – JCPDS 74-2304                |               |
| Diffraction<br>angle (2θ in<br>degrees) | D spacing (Å) | Diffraction<br>angle (2θ in<br>degrees) | D spacing (Å) |
| 17.894                                  | 4.95304       | 17.901                                  | 4.9511        |
| 20.290                                  | 4.37375       | 20.242                                  | 4.3835        |
| 24.090                                  | 3.69186       | 23.914                                  | 3.7180        |
| 25.606                                  | 3.47604       | 25.510                                  | 3.4888        |
| 27.193                                  | 3.27670       | 27.155                                  | 3.2812        |
| 29.488                                  | 3.02672       | 29.455                                  | 3.0300        |
| 33.520                                  | 2.67129       | 33.690                                  | 2.6581        |
| 34.510                                  | 2.59675       | 34.480                                  | 2.5990        |
| 35.190                                  | 2.54814       | 35.180                                  | 2.5489        |
| 35.742                                  | 2.51014       | 35.732                                  | 2.5108        |
| 39.838                                  | 2.26100       | 39.856                                  | 2.2600        |
| 40.711                                  | 2.21448       | 40.608                                  | 2.2198        |
| 41.940                                  | 2.15241       | 41.884                                  | 2.1551        |
| 43.130                                  | 2.09575       | 43.185                                  | 2.0932        |
| 47.718                                  | 1.90437       | 47.808                                  | 1.9010        |
| 49.320                                  | 1.84635       | 49.260                                  | 1.8483        |
| 54.284                                  | 1.68851       | 54.180                                  | 1.6915        |
| 56.018                                  | 1.64030       | 56.006                                  | 1.6406        |
| 57.530                                  | 1.60067       | 57.448                                  | 1.6028        |
| 58.185                                  | 1.58427       | 58.166                                  | 1.5847        |
| 61.013                                  | 1.51742       | 61.120                                  | 1.5150        |
| 61.480                                  | 1.50702       | 61.387                                  | 1.5090        |
| 62.890                                  | 1.47664       | 62.594                                  | 1.4828        |
| 64.458                                  | 1.44438       | 64.277                                  | 1.4480        |
| 65.460                                  | 1.42466       | 65.328                                  | 1.4272        |
| 66.696                                  | 1.40126       | 66.885                                  | 1.3977        |
| 67.400                                  | 1.38838       | 67.472                                  | 1.3870        |
| 69.504                                  | 1.35134       | 69.768                                  | 1.3468        |
| 74.459                                  | 1.27320       | 74.536                                  | 1.2720        |
| 77.850                                  | 1.22596       | 77.639                                  | 1.2288        |
|                                         |               |                                         |               |

# 4.1.2. XRD - Expected $2\theta$ Positions

The value of d (the interplanar spacing between the atoms) is calculated using Bragg's Law:  $2d\sin\theta=n\,\lambda$ 

$$d = \frac{\lambda}{2 \sin \theta} \quad (n = 1)$$

Wavelength  $\lambda = 1.5418 \text{ Å for Cu K}\alpha$ 

The expected  $2\theta$  positions of all the peaks in the diffraction pattern and the interplanar spacing d for each peak is calculated using following formula and the details are shown in table.2.

$$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left( \frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$$

Bragg's Law is used to determine the  $2\theta$  value: The expected  $2\theta$  and d values are close with the experimental  $2\theta$  and d values [2].

Table.2. The Lattice plane and the lattice spacing from d from  $\boldsymbol{XRD}$ 

|      | 2θ(deg)    |          | D((Å)          | D((Å)    |  |
|------|------------|----------|----------------|----------|--|
| hkl  | Experiment | Expected | Experi<br>ment | Expected |  |
| 011  | 17.89      | 17.9122  | 4.9530         | 4.9461   |  |
| -111 | 20.29      | 20.2470  | 4.3737         | 4.3806   |  |
| 020  | 24.09      | 23.9048  | 3.6918         | 3.7180   |  |
| 200  | 25.60      | 25.5000  | 3.4760         | 3.4888   |  |
| 120  | 27.19      | 27.1436  | 3.2767         | 3.2810   |  |
| 012  | 29.48      | 29.4891  | 3.0267         | 3.0254   |  |
| 211  | 33.52      | 33.6900  | 2.6712         | 2.6569   |  |
| 112  | 34.51      | 34.5100  | 2.5967         | 2.5958   |  |
| -212 | 35.19      | 35.1970  | 2.5481         | 2.5467   |  |
| -221 | 35.74      | 36.2990  | 2.5101         | 2.4719   |  |
| 221  | 39.83      | 40.3790  | 2.2610         | 2.2310   |  |
| 310  | 40.71      | 40.5935  | 2.2144         | 2.2197   |  |
| 131  | 41.94      | 42.3836  | 2.1524         | 2.1300   |  |
| 212  | 43.13      | 43.2076  | 2.0957         | 2.0913   |  |
| 023  | 47.71      | 47.8570  | 1.9043         | 1.8984   |  |
| 132  | 49.32      | 49.2726  | 1.8463         | 1.8472   |  |
| 312  | 54.28      | 54.1950  | 1.6885         | 1.6904   |  |
| 240  | 56.01      | 55.9821  | 1.6403         | 1.6406   |  |
| -214 | 57.53      | 57.5204  | 1.6006         | 1.6003   |  |
| 331  | 58.18      | 58.1533  | 1.5842         | 1.5844   |  |
| 024  | 61.01      | 61.1971  | 1.5174         | 1.5127   |  |
| 114  | 61.48      | 61.4691  | 1.5070         | 1.5066   |  |
| -314 | 62.89      | 62.6542  | 1.4766         | 1.4809   |  |
| -431 | 64.45      | 64.2525  | 1.4443         | 1.4479   |  |
| 430  | 65.46      | 65.3365  | 1.4246         | 1.4265   |  |
| 412  | 66.69      | 66.8928  | 1.4012         | 1.3970   |  |
| 204  | 67.40      | 67.5509  | 1.3883         | 1.3850   |  |
| 431  | 69.50      | 69.7502  | 1.3513         | 1.3466   |  |
| 440  | 74.45      | 74.5039  | 1.2732         | 1.2702   |  |
| 413  | 77.85      | 77.6916  | 1.2259         | 1.2276   |  |

## 4.1.3. XRD - Dislocation Density

The dislocation density is defined as the length of dislocation

lines per unit volume of the crystal. In materials science, a dislocation is a crystallographic defect, or irregularity, within a crystal structure. The presence of dislocations strongly influences many of the properties of materials. The movement of a dislocation is impeded by other dislocations present in the sample. Thus, a larger dislocation density implies a larger hardness.

The X-ray line profile analysis has been used to determine the dislocation density. The dislocation density ( $\delta$ ) in the sample has been determined using expression.

$$\delta = \frac{15 \beta \cos \theta}{4aD}$$

Where  $\delta$  is dislocation density,  $\beta$  is broadening of diffraction line measured at half of its maximum intensity (in radian),  $\theta$  is Bragg's diffraction angle (in degree), a is lattice constant (in nm) and D is particle size (in nm). The dislocation density can also be calculated from

$$\delta = \frac{1}{D^2}$$

Where  $\delta$  is dislocation density and D is the crystallite size. Results of the dislocation density calculated from both the formulas are given in table.3. The number of unit cell is calculated from

$$n = \pi (4/3) \times (D/2)^3 \times (1/V)$$

Where D is the crystallite size and V is the cell volume of the sample [2].

Table.3. Dislocation Density and Number of Unit Cell from  $\boldsymbol{\mathsf{XRD}}.$ 

| AND.       |                |                                            |                    |                               |
|------------|----------------|--------------------------------------------|--------------------|-------------------------------|
| 2θ (deg) S | Particle       | Dislocation Density (m²) x10 <sup>14</sup> |                    | Number of                     |
|            | Size<br>D (nm) | δ = 15βcosθ<br>/4aD                        | $\delta = 1 / D^2$ | Unit Cell<br>x10 <sup>5</sup> |
| 20.290     | 36.68          | 5.40                                       | 7.42               | 0.723                         |
| 25.606     | 81.47          | 1.09                                       | 1.50               | 7.923                         |
| 27.193     | 62.87          | 1.84                                       | 2.53               | 0.004                         |
| 29.488     | 48.32          | 3.11                                       | 4.28               | 1.653                         |
| 33.520     | 69.14          | 1.52                                       | 2.09               | 4.843                         |
| 39.838     | 70.42          | 1.46                                       | 2.01               | 5.116                         |
| 43.130     | 77.66          | 1.21                                       | 1.65               | 6.862                         |
| 49.320     | 46.01          | 3.43                                       | 4.72               | 1.427                         |
| 57.530     | 82.39          | 1.07                                       | 1.47               | 8.195                         |
| 62.890     | 54.78          | 2.42                                       | 3.33               | 2.408                         |
| 67.400     | 73.46          | 1.34                                       | 1.85               | 5.807                         |
| 69.504     | 80.58          | 1.12                                       | 1.53               | 7.666                         |
| 77.850     | 63.08          | 1.56                                       | 2.15               | 4.623                         |

It is observed from these tabulated details, and from figure.2, figure.3 and figure.4, dislocation density is indirectly proportional to particle size and number of unit cell. Dislocation density increases while both particle size and number of unit cell decreases [2].

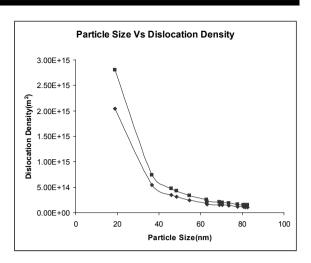



Figure.2 Particle size Vs Dislocation density for lead chromate nanoparticles.

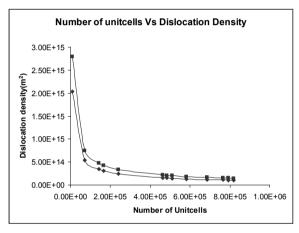



Figure.3 Number of Unit cells Vs Dislocation density for lead chromate nanoparticles.

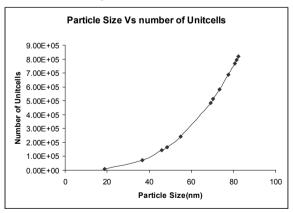



Figure.4 Particle Size Vs Number of Unitcells for lead chromate nanoparticles.

# 4.1.4. XRD - Morphology Index

A XRD morphology index (MI) is calculated from FWHM of XRD data using the relation  $\,$ 

$$M.I = \frac{FWHM_h}{FWHM_h + FWHM_p}$$

Where M.I. is morphology index, FWHM<sub>h</sub> is highest FWHM value obtained from peaks and FWHM<sub>p</sub> is value of particular peak's FWHM for which M.I. is to be calculated. The relation between

morphology index and particle size is shown in table.5.

Table.5. Relation between Morphology Index and Particle size.

| SIZC.               |                     |                             |
|---------------------|---------------------|-----------------------------|
| FWHM (β)<br>radians | Particle Size(D) nm | Morphology Index (unitless) |
| 0.00383             | 36.688              | 0.236                       |
| 0.00750             | 18.893              | 0.136                       |
| 0.00174             | 81.477              | 0.405                       |
| 0.00226             | 62.879              | 0.266                       |
| 0.00296             | 48.327              | 0.286                       |
| 0.00209             | 69.147              | 0.362                       |
| 0.00383             | 37.887              | 0.236                       |
| 0.00209             | 70.423              | 0.362                       |
| 0.00191             | 77.665              | 0.383                       |
| 0.00331             | 47.013              | 0.326                       |
| 0.00157             | 99.992              | 0.430                       |
| 0.00190             | 82.397              | 0.383                       |
| 0.00296             | 54.782              | 0.266                       |
| 0.00220             | 73.462              | 0.266                       |
| 0.00200             | 80.584              | 0.362                       |
| 0.00260             | 68.085              | 0.312                       |
|                     |                     |                             |

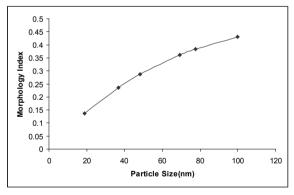



Figure.5 Morphology Index of lead chromate nanoparticles.

It is observed that MI has direct relationship with particle size [3] and the results are shown in Figure.5.

### 4.1.6. XRD - Unit Cell Parameters

Unit cell parameters values calculated from XRD are enumerated in table.6.

Table.6. XRD parameters of lead chromate nanoparticles.

| rubicio: interprinte pur university of real environment maniopur tree                  |                                                                                  |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Parameters                                                                             | Values                                                                           |  |
| Structure<br>Space group<br>Symmetry of lattice<br>Particle size<br>Lattice parameters | Primitive<br>P21/c[14]<br>Monoclinic<br>70.43 nm<br>a= 7.145;b = 7.436;c = 6.795 |  |
| Vol.unit cell(V) Density (ρ) Dislocation Density Mass                                  | 352.57<br>6.089<br>x10 <sup>14</sup><br>323.19amu                                |  |

#### 4.2. SEM studies

Scanning electron microscopy was used to analyze the morphology and size of the synthesized lead chromate nanoparticles. Figure.6 and Figure.7 show the SEM images of the lead chromate nanoparticles at various magnifications. The SEM images of lead chromate nano particles show well crystallized particles with tetragonal shape. In this case the particles sizes are slightly increased and is also observed that the particles are distributed with agglomeration.

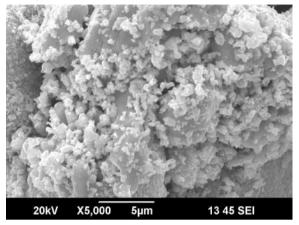



Figure.6 SEM image at 5000 magnifications.

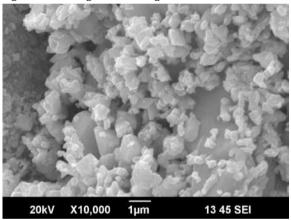
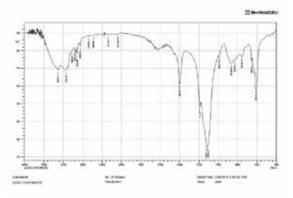




Figure.7 SEM image at 10000 magnifications.

## 4.3. FTIR Studies

The FTIR spectrum of the lead chromate sample is shown in the figure.8. The FTIR spectrum for lead chromate show peaks at 3315.41cm<sup>-1</sup>, 3139.9 cm<sup>-1</sup>, 3020.32 cm<sup>-1</sup>corresponding to free O-H group [4] and the spectrum also shows peak at 1191.93cm<sup>-1</sup> indicating the presence of lead and peak at 655.75cm<sup>-1</sup> represents Cr-O stretching mode.

Figure.8 FTIR spectra of lead chromate nanoparticles.



#### 4.4. UV Studies

The band gap of the prepared sample lead chromate was determined by using UV visible studies. From the UV spectrum the optical band gap of lead chromate is 4.4eV. Figure.9 shows the graph to find the band gap of lead chromate nanoparticles.

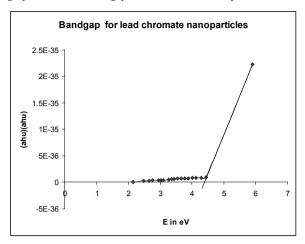



Figure.9 Graph to find the band gap of lead chromate nanoparticles.

### 5. CONCLUSIONS

The lead chromate nanoparticles have been prepared by chemical co-precipitation method. XRD analysis suggests that the average particle size is in the nano range (70.423nm). The SEM picture reveals the well crystallized particles with tetrahedral morphology. From the FTIR spectrum, the stretching and bending frequencies of the molecular functional groups in the sample are studied. From the UV spectra, the band gap was found.

REFERENCE

1. R.Hepzi Pramila Devamani, M.Alagar, Synthesis and characterization of Lead (II) Phosphate Nanoparticles, Elixir Nanotechnology,61, 2013. pp.16922-16926. | 2. M.Alagar, T.Theivasanthi, Nano sized copper particles by electrolytic synthesis and characterizations, Int. J. Phy. Sci. 2011, 6(15): 3662-3671. | 3. T.Theivasanthi, M.Alagar, Konjac Biomolecules Assisted–Rod/ Spherical Shaped Lead Nano Powder Synthesized by Electrolytic Process and Its Characterization Studies, Nano.Biomed.Eng, 2013, 5(1):11-19. | 4. M.Samim, N.K.Kaushik, A.Maitra, Effect of size of copper nanoparticles on its catalytic behaviour in Ullman reaction, Bull. Mater. Sci. 2007, 30(5):535–540. | |