

Synthesis and Characterization of Some New Substituted Piperidine Derivatives

Chemistry

KEYWORDS: piperidine-4-one, piperidine, hydrazine hydrochloride, reflux, microwave

RAJALAKSHMI . S

Department of Chemistry, Queen Mary's College, Chennai, India.

SRINIVASAN. S

Department of Chemistry, Queen Mary's College, Chennai, India.

ARUNA.S

Department of Chemistry, Queen Mary's College, Chennai, India.

R.GIRIJA

Department of Chemistry, Queen Mary's College, Chennai, India.

ABSTRACT

These findings prompted us to synthesize compounds containing nearly four piperidine are prepared. The piperidine are coupled with three amino acid hydrazides under microwave irradiation. The products obtained are checked for purity and the characterization is done. All these piperidine derivatives are characterized by IH, 13C NMR and Mass spectral studies.

INTRODUCTION

In recent years, there has been a growing interest pertaining to the synthesis of bioactive compounds in the field of organic chemistry. In the present study, a series of piperidines were synthesized by condensation of 4-methyl pentanone, aromatic aldehyde and ammonium acetate by Mannich reaction [1-3]. In continuation of earlier studies in piperidines some new derivatives are prepared under microwave irradiation, which gives good yields in shorter reaction times [5-8]. The significance of piperidines as intermediate in the synthesis of a collection of compounds of physiologically active has been reviewed by Prostakov and Gaivoronskaya [9-10]. A recent literature survey revealed that the piperidines moiety have been widely used by the medicinal chemist in the past to explore its biological activities and pharmacological properties viz., antimicrobial, anticancer, antihypertensive, antitubercular activities. Hence, this field has ever growing importance resulting in the development scores of piperidines. Therefore it has been considered worthwhile to synthesize some new series of piperidines by microwave irradiation and conventional methods [11-12]. Piperidines are generally synthesized by one pot cyclocondensation of aryl aldehydes, dicarbonyls, β -ketoesters and ammonium acetate, ammonia, primary amine in refluxing with alcohol leading to low yields with longer reaction times. These compounds were screened for their acute oral to their various biological properties such as antiviral, anti-inflammatory, local anesthetic, antimicrobial activity. Similarly imidazole, pyrazole and oxazole were also exhibiting several activities and the fused bicycles of piperidines with imidazole, pyrazole and oxazole are not available in the literature and hence this prompted us to carry out the system of fused heterocycles with piperidines moiety with other heterocycles. The methods employed have been compared in terms of yields, reaction times [13-16]. All the experimental conditions in MWI method, when compared to conventional, are easy, simple, eco friendly and the reactions are rapid and high yield. The studies undertaken on piperidines have direct relation to the synthesis of drug molecules. However, the biological properties of piperidines are highly dependent on the type and locations of substituent on the heterocyclic ring continue to derive the search for new methodologies [16-17]. In recent years green chemistry protocols are incorporated for the synthesis of organic molecules due to their advantages like reduction of waste, improved yields and decreases of reaction time compared with classical methods which required drastic reaction conditions and prolonged reaction time. Therefore, the synthesis of piperidines has been the topic of considerable synthetic effort [18-19].

MATERIAL AND METHODS

All the chemicals and the reagents used in the study were of

synthesis grade purity. Isobutyl methyl ketone, ethylmethyl ketone, benzaldehyde, p-chloro benzaldehyde, ethylchloro acetate, amino acids, hydrazine hydrochloride and ethanol are purchased from Qualigens Fine Chemicals Company. Solvents used were purified by distillation. All substance prepared for studies were purified by crystallization using appropriate solvents and established procedures. Melting points were measured on a sigma melting point apparatus using capillary tubes. Analytical TLC was performed on pre coated sheets of silica gel to monitor the process of the reaction as well as to check the purity. The spots were visualized by using iodine vapour. IR spectra were recorded on FTIR-8300 shimadzu spectrometer. ^1H & ^{13}C NMR spectra were recorded on Jeol GSX (400 MHz) and DPX 200 (200MHz). Mass spectra were recorded on Jeol-JMS-DX 30hf.

EXPERIMENTAL

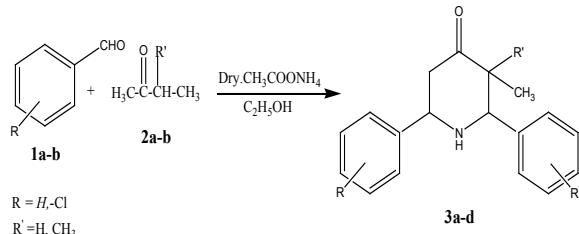
PREPARATION OF 2,6-DIPHENYL PIPERIDINE -4-ONE: 3a-d

Dry ammonium acetate (38.5g) and ethanol (50ml) was added and the solution was mixed with benzaldehyde (106g) and then ketone was added and boiled in waterbath for 20-30 minutes. The yellow colour solution was formed. After 10 minutes the yellow colour solution turned into a brown colour solution. The solution was removed from the waterbath and the solution remained undisturbed overnight (24hrs). After adding concentrated hydrochloric acid with the above solution a brown precipitate was formed. The precipitate was filtered with suction pump and the precipitate was dried. The dried precipitate was washed with 1:5 (Ethanol:Ether) solution. Recrystallization from ethanol and melting point is noted.

PREPARATION OF AMINO ACID HYDRAZIDE

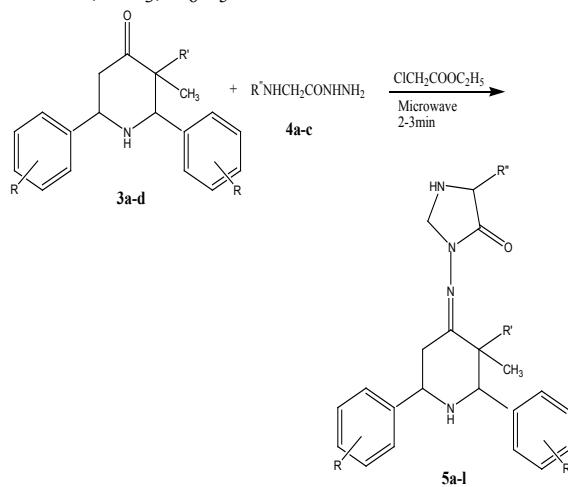
Amino acid hydrazides are prepared by the following method:

Glycine aminoacid (3.75g, 0.05 mole) and ethanol (20 ml) was added with con. hydrochloric acid (5ml), (acid catalyst). This mixture was refluxed for 12 hr to get aminoacid ester. After completion of this reaction, aminoacid ester (4.35g, 0.05 mol) thus obtained was added with hydrazine hydrochloride (3.4g, 0.05 mol) and ethanol (50 ml) was refluxed for 15 hrs. The precipitate (4a-c) was formed and fileted with suction pump and dried. The dried precipitate (aminoacid hydrazide) was recrystallised from ethanol and the melting point was noted.


Amino acids used for hydrazide preparation are

1. Glycine
2. Alanine
3. Phenyl Alanine

PREPARATION OF 2,6-DIPHENYL-3-(SUBSTITUTED)-4-PIPERAZO-(1,4 -DIAZO-3-(SUBSTITUTED)-2-KETONE): 5a-1


Equal mole of substituted amino acid hydrazide (0.8g, 0.01mol) and substituted piperidone (3.17g, 0.01mol) react with ethyl chloroacetate in the reaction under microwave condition 2-3 minutes. The 2,6-Diphenyl-3-(substituted)-4-piperazo-(1,4- diazo-3-(substituted)-2-ketone) **5a-1** was obtained. The pipridine was recrystallised from ethanol.

SCHEME-I

SCHEME-II

$\text{R}'' = \text{H}, \text{CH}_3, \text{C}_6\text{H}_5$

CHARACTERIZATION:

SYNTHESIS OF 2,6-DIPHENYL-3-DIMETHYL-4-PIPERAZO-(1,4-DIAZO-2-KETONE): 5a

A mixture of 2,6-diphenyl-3-dimethyl piperidone-4-one **3a** (2.89g, 0.01mol) with glycine hydrazide (0.89g, 0.01mol) is added ethyl chloro acetate in microwave irradiation for 2-3minutes the 2,6-Diphenyl-3-dimethyl-4-piperazo-(1,4-diazo-2-ketone) **5a** was prepared. M.P: 170-173°C. ^1H NMR : δ 0.805, 1.064(2s, CH_3), 2.171, 2.669, 2.703 (3s, CH_2), 7.216-7.7281 (m, Ar-H), 7.881 (s, NH), 4.43(s, NH). ^{13}C NMR : 816.83, 18.30, 22.06, 22.28, 22.38, 28.47, 45.92, 58.17, 65.21, 122.01, 122.48, 123.07, 123.83, 127.10, 127.84, 127.10, 127.84, 127.99, 129.22, 130.43, 203.73. Mass : (m/z):371.

SYNTHESIS OF 2,6-DIPHENYL-3-DIMETHYL-4-PIPERAZO-(1,4-DIAZO-3-METHYL-2-KETONE): 5b

A mixture of 2,6-diphenyl-3-dimethyl piperidone-4-one **3a** (2.89g, 0.01mol) with Alanine hydrazide (1.03g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-Diphenyl-3-dimethyl-4-piperazo-(1,4-diazo-3-methyl-2-ketone) **5b** was prepared. M.P:145-150°C. ^1H NMR : δ 0.770, 1.039, 1.286 (3s, CH_3), 2.379, 2.631 (2s, CH_2), 4.625 (s, NH), 7.206-7.981 (m, Ar-H), 8.691 (s, NH). ^{13}C NMR : δ 17.71, 22.39, 25.83, 39.85, 40.80, 55.42, 57.16, 61.29, 65.14, 127.05, 127.38, 127.56, 128.58, 128.85, 129.04, 129.26, 129.39, 130.05, 133.01, 133.50, 133.95, 203.39. Mass : (m/z):387.

SYNTHESIS OF 2,6-DIPHENYL-3-DIMETHYL-4-PIPERAZO-(1,4-DIAZO-3-PHENYL-2-KETONE): 5c

A mixture of 2,6-diphenyl-3-dimethyl piperidone-4-one **3a** (2.89g,

0.01mol) with phenyl Alanine hydrazide (1.81g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-Diphenyl-3-dimethyl-4-piperazo-(1,4-diazo-3-phenyl-2-ketone) **5c** was prepared. M.P:160°C. ^1H NMR : δ 0.956, 1.054 (2s, CH_3), 2.004, 2.391 (2s, CH_2), 3.758 (s, CH), 4.634 (s, NH), 7.194-7.741 (m, Ar-H), 7.977 (s, NH). ^{13}C NMR : δ 20.33, 21.97, 39.58, 40.08, 41.17, 45.87, 55.32, 57.36, 127.00, 127.48, 127.81, 128.70, 128.83, 128.90, 129.04, 129.22, 129.30, 129.44, 129.66, 129.76, 130.15, 131.43, 133.58, 133.83, 134.06, 203.47. Mass : (m/z):463.

SYNTHESIS OF 2,6-DIPHENYL-3-METHYL-4-PIPERAZO-(1,4-DIAZO-2-KETONE): 5d

A mixture of 2,6-diphenyl-3-methyl piperidone-4-one **3b** (2.61g, 0.01mol) with Glycine hydrazide (0.89g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-Diphenyl-3-methyl-4-piperazo-(1,4-diazo-2-ketone) **5d** was prepared. M.P:154°C. ^1H NMR : δ 0.871 (s, CH_3), 2.971, 2.565, 2.613 (3s, CH_3), 7.162-7.813 (m, Ar-H), 4.051 (s, NH), 8.916 (CS, NH). ^{13}C NMR : 814.17, 22.59, 22.83, 26.03, 26.21, 45.87, 65.14, 127.50, 127.83, 127.56, 127.94, 128.31, 128.56, 128.92, 129.32, 129.56, 133.63, 202.14. Mass : (m/z):345.

SYNTHESIS OF 2,6-DIPHENYL-3-METHYL-4-PIPERAZO-(1,4-DIAZO-3-METHYL-2-KETONE): 5e

A mixture of 2,6-diphenyl-3-methyl piperidone-4-one **3b** (2.61g, 0.01mol) with Alanine hydrazide (1.03g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-Diphenyl-3-methyl-4-piperazo-(1,4-diazo-3-methyl-2-ketone) **5e** was prepared. M.P: 132°C. ^1H NMR : δ 0.789 (2s, CH_3), 2.171 (s, CH), 2.669, 2.703 (d, CH_2), 3.593 (s, CH_3), 7.126-7.818 (m, Ar-H), 4.473 (s, NH), 7.881 (s, NH). ^{13}C NMR : 815.86, 16.92, 23.51, 23.89, 26.56, 26.82, 27.92, 127.02, 127.63, 128.35, 128.69, 128.92, 129.12, 129.45, 130.12, 135.95, 136.12, 136.92, 205.12. Mass : (m/z):359.

SYNTHESIS OF 2,6-DIPHENYL-3-DIMETHYL-4-PIPERAZO-(1,4-DIAZO-3-PHENYL-2-KETONE): 5f

A mixture of 2,6-diphenyl-3-methyl piperidone-4-one **3b** (2.61g, 0.01mol) with phenyl Alanine hydrazide (1.81g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-Diphenyl-3-dimethyl-4-piperazo-(1,4-diazo-3-phenyl-2-ketone) **5f** was prepared. M.P: 86°C. ^1H NMR : δ 0.893 (s, CH_3), 1.620, 1.731 (2s, CH_2), 2.913 (s, CH), 7.207-7.708 (m, Ar-H), 7.923 (s, NH), 4.523 (s, NH). ^{13}C NMR : 816.92, 22.19, 23.56, 23.92, 45.78, 129.12, 129.73, 129.94, 130.17, 130.45, 130.86, 130.99, 132.19, 132.25, 132.79, 133.09, 133.25, 133.46, 133.53, 133.82, 202.69. Mass : (m/z):435.

SYNTHESIS OF 2,6-(4-CHLOROPHENYL)-3-DIMETHYL-4-PIPERAZO-(1,4-DIAZO-2-KETONE): 5g

A mixture of 2,6-(4-Chlorophenyl)-3-dimethyl piperidone-4-one **3c** (3.59g, 0.01mol) with glycine hydrazide (0.89g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-(4-Chlorophenyl)-3-dimethyl-4-piperazo-(1,4-diazo-2-ketone) **5g** was prepared. M.P: 168-170°C. ^1H NMR : δ 0.806, 1.065 (2s, CH_3), 2.172, 2.668, 2.704 (3s, CH_2), 7.215-7.728 (m, Ar-H), 7.882 (s, NH), 4.432 (s, NH). ^{13}C NMR : 816.84, 18.32, 22.07, 22.38, 22.39, 28.48, 45.93, 58.18, 65.23, 122.02, 122.49, 123.06, 123.84, 127.12, 127.85, 127.11, 127.85, 127.98, 129.23, 130.44, 203.74. Mass : (m/z):439,441($\text{M}^+ \text{Cl}^-$).

SYNTHESIS OF 2,6-(4-CHLOROPHENYL)-3-DIMETHYL-4-PIPERAZO-(1,4-DIAZO-3-METHYL-2-KETONE): 5h

A mixture of 2,6-(4-Chlorophenyl)-3-dimethyl piperidone-4-one **3c** (3.59g, 0.01mol) with Alanine hydrazide (1.03g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-(4-Chlorophenyl)-3-dimethyl-4-piperazo-(1,4-diazo-3-methyl-2-ketone) **5h** was prepared. M.P:150-155°C. ^1H NMR : δ 0.780, 1.038, 1.287 (3s, CH_3), 2.377, 2.632 (2s, CH_2), 4.626 (s, NH), 7.205-7.982 (m, Ar-H), 8.694 (s, NH). ^{13}C NMR : δ 17.72, 22.38, 25.84, 39.86, 40.81, 55.44, 57.15, 61.38, 65.16, 127.04, 127.39, 127.54, 128.57, 128.86, 129.06, 129.36, 129.36, 130.08, 133.02, 133.50.

133.96, 203.38 Mass : (m/z):455,457(M²⁺-Cl).

SYNTHESIS OF 2,6-(4-CHLOROPHENYL-3-DIMETHYL-4-PIPERAZO-(1,4-DIAZO-3-PHENYL-2-KETONE): 5i

A mixture of 2,6-(4-Chlorophenyl)-3-dimethyl piperidine-4-one **3c** (3.59g, 0.01mol) with phenyl Alanine hydrazide (1.81g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-(4-Chlorophenyl-3-dimethyl-4-piperazo-(1,4-diazo-3-phenyl-2-ketone) **5i** was prepared. M.P:196°C. ¹H NMR: δ 0.956, 1.055 (2s,CH₃), 2.014, 2.392 (2s,CH₂), 3.757 (s,CH), 4.636 (s,NH), 7.196-7.742 (m,Ar-H), 7.978(s,NH). ¹³C NMR : δ 20.34, 21.98, 39.56, 40.05, 41.18, 45.89, 55.33, 57.37, 127.01, 127.49, 127.82, 128.71, 128.84, 128.92, 129.05, 129.24, 129.31, 129.45, 129.67, 129.76, 130.16, 131.44, 133.59, 133.83, 134.08, 203.48. Mass : (m/z):531,533(M²⁺-Cl).

SYNTHESIS OF 2,6-(4-CHLOROPHENYL-3-METHYL-4-PIPERAZO-(1,4-DIAZO-2-KETONE): 5j

A mixture of 2,6-(4-Chlorophenyl)-3-methyl piperidine-4-one **3d** (3.31g, 0.01mol) with Glycine hydrazide (0.89g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-(4-Chlorophenyl-3-methyl-4-piperazo-(1,4-diazo-2-ketone) **5j** was prepared. M.P:160°C. ¹H NMR : δ 0.892(s,CH₃), 2.854, 2.956, 3.152 (3s,CH₂), 7.252-7.416(2d,Ar-H), 4.312(s,NH), 8.892(S,NH). ¹³C NMR: 814.18 ,22.60 ,22.73, 26.04, 26.31, 45.77, 65.24, 127.60, 127.73, 127.46, 127.84, 128.41, 128.66, 128.81, 129.43, 129.67, 133.73, 202.15. Mass : (m/z): 413,415(M²⁺-Cl).

SYNTHESIS OF 2,6-(4-CHLOROPHENYL-3-METHYL-4-PIPERAZO-(1,4-DIAZO-3-METHYL-2-KETONE): 5k

A mixture of 2,6-(4-Chlorophenyl)-3-methyl piperidine-4-one **3d** (3.31g, 0.01mol) with Alanine hydrazide (1.03g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-(4-Chlorophenyl-3-methyl-4-piperazo-(1,4-diazo-3-methyl-2-ketone) **5k** was prepared. M.P: 120°C. ¹H NMR : . δ 0.799

(2s,CH₃) , 2.281(s-CH), 2.568,2.802(d,CH₂), 3.483(s,CH₂),7.225-7.819(m,Ar-H), 4.475(s,NH),7.982(s,NH). ¹³C NMR : δ 15.76, 16.82, 23.52, 23.88, 26.66, 26.83, 27.94, 127.05, 127.73, 128.45, 128.68, 128.93, 129.22, 129.46, 130.32, 135.75, 136.22, 136.82, 205.14. Mass : (m/z):427,429 (M²⁺-Cl).

SYNTHESIS OF 2,6-(4-CHLOROPHENYL-3-METHYL-4-PIPERAZO-(1,4-DIAZO-3-PHENYL-2-KETONE) : 5l

A mixture of 2,6-(4-Chlorophenyl)-3-methyl piperidine-4-one **3d** (3.39g, 0.01mol) with phenyl Alanine hydrazide (1.81g, 0.01mol) is added ethyl chloro acetate by the usual workup afforded 2,6-(4-Chlorophenyl-3-methyl-4-piperazo-(1,4-diazo-3-phenyl-2-ketone) **5l** was prepared. M.P: 178°C. ¹H NMR : δ 0.882(s,CH₃), 1.721,1.732(2s,CH₂), 2.915(s-CH), 7.308-7.609(m,Ar-H), 7.824(s,NH), 4.643(s,NH). ¹³C NMR: δ 16.93, 22.18, 23.56, 23.93, 45.68, 129.13, 129.63, 129.95, 130.18, 130.25, 130.87, 130.98, 132.17, 132.35, 132.78, 133.06, 133.26, 133.26, 133.54, 133.83, 202.68. Mass : (m/z):503,505 (M²⁺-Cl).

REFERENCE

1. G.L. Balaji, V. Vijayakumar*, K. Rajesh, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, Received 13 June 2011; accepted 10 December 2011 | 2. Balasubramanian, S., Aridoss, G., Parthiban, P., 2006. Biol. Pharm., Bull., 125. | 3. Med. Chem. 43, 2915. | 5. SubhaNandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M., Natarajan, S., 2003. Acta Cryst.E59, o1672. | 6. Vijayakumar, V., Sundaravadivelu, M., Perumal, S., Hewlines, M.J.E.,2000. Mag. Reson. Chem. 38, 883. | 7. Vijayakumar, V., Sundaravadivelu, M., Perumal, S., 2001. Mag. Reson. Chem. 39, 101. | 8. Vijayakumar, V., Sundaravadivelu, M., Perumal, S., 2005. Mag. Reson. Chem. 45, 479. | 9. BalasubramanianPremalatha, SelvarnElavarasan, DurairajPeterBhakiaraj, BalasubramanianChellakali and Mannathusamy-Gopalakrishnan* Synthetic Organic Chemistry Laboratory, Department of Chemistry, Annamalai University, Annamalainagar - 608 002, Tamil Nadu, INDIA | 10. N. S. Prostakov, L. A. Gaivoronskaya, γ -Piperidinones in Organic Synthesis. Chem. Rev. 1978, 47(5), 447-469. | 11. Sameer R and Harshitha R (2010) An efficient synthesis of some substituted piperidinone-4-ones thiosemicarbazone derivatives as potential anticonvulsants under microwave irradiation, Indian journal of chemistry, (2010), 49B, 547-553. | 12. SrinivasNayakAmgothi* Sruthi Mandala2 University College of Pharmaceutical Sciences, Satavahanha University, Karimnagar-505001, Andhra Pradesh, India . | 13. Sayre, L. M., Engelhart, D. A., Nadkarni, D. V., Babu, M. K. M., Klein, M. E., McCoy, G., Xenobiotica, 1995, 25, 769. | 14. Brunner, H., Kagan, H. B., Kreutzer, G., Tetrahedron: Asymmetry, 2003, 14, 2177. | 15. Compair, P., Gore, J., Vatele, J. M., Tetrahedron, 1996, 52, 6647. | 16. Ooi, T., Saito, A., Maruoka, K., J. Am. Chem. Soc., 2003, 125, 3220. | 17. Hagishita, S., Shirahase, M. K., Okada, T., Murakami, Y., Med Chem., 1996, 39, 3636. | 18. Louasma, M., Karvinen, E., Koskinen, A., Jokela, R., Tetrahedron, 1987, 43, 2135. | 19. N.Jayalakshmi and S. Nanjundana Department of Chemistry, Velammal College of Engineering, Chennai -600066, (T. N.) Indir Department of Chemistry, Anna University-Chennai, India |