

Effect of Inorganic Content on Thermal Stability and Antimicrobial Properties of Inorganic-Organic Hybrid Dimethacrylate Resins

Chemistry

KEYWORDS : inorganic-organic hybrid resins, thermal stability, antimicrobial properties, sol-gel, 3-trimethoxysilyl propyl methacrylate

Vibha C

Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012.

Lizymol P.P *

Biomedical Technology Wing, SreeChitraTirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram 695012. Corresponding Author

ABSTRACT

Novel inorganic-organic hybrid resins synthesized through sol-gel seek great attention due to versatility of its applications in various fields. In this work, novel inorganic-organic hybrid resins containing of alkoxides of calcium, magnesium and zinc with polymerizable dimethacrylate groups was synthesized using 3-trimethoxysilyl propyl methacrylate as the precursor. The objective of the present study was to investigate the effect of inorganic content on thermal stability and antimicrobial properties of the novel inorganic-organic hybrid resins.

Introduction

Inorganic-organic hybrid resins have wide range of applications in the field of microelectronics, wear-resistant coating, micro-optics, electro-optics, encapsulations, satellite devices, photonics, as matrices for dental composites and biomedical applications due to their good physico-mechanical properties, biocompatibility, heat dissipation, low thermal expansion and light weight [1-2]. In inorganic-organic hybrid resins, organic polymer components bring good elasticity, tenacity, ductility and low density, while the inorganic components increased hardness, stiffness and resistance to elevated temperature. The prospect of the combination of these two components can create hybrid materials [3]. Our previous studies showed that [3-6] the incorporated inorganic content present in the inorganic-organic hybrid resins significantly influenced the polymerization shrinkage, physico-mechanical properties and biocompatibility of photocured composite, which motivated for the synthesis of novel antimicrobial and thermally stable inorganic-organic hybrid resins. In the present study, we synthesized inorganic-organic hybrid resins containing alkoxides of calcium (CaR1), magnesium (MgR1) and zinc (ZnR1) with polymerisable dimethacrylate groups. The resins were synthesized through modified sol-gel method using 3-trimethoxy silyl propyl methacrylate as the precursor [7]. Alkoxides of calcium, magnesium and zinc were incorporated in the resin due to its reported functions in biomedical applications [8-14]. The effects of inorganic content on antimicrobial properties and thermal stability of CaR1, ZnR1 and MgR1 were evaluated and compared with reported control material (Bis GMA) [4]. The novel resin was found to have antimicrobial properties and good thermal stability.

Experimental section

The inorganic – organic hybrid resins with polymerizable dimethacrylate group were synthesized through a patented [7] modified sol-gel technique. Resins containing mixtures of alkoxides of calcium /magnesium / zinc were synthesized by reacting γ -Trimethoxy silyl propyl methacrylate and deionised water in the molar ratio (1:4). To the stirred mixture added 1 ml 6N NaOH followed by the addition of calcium hydroxide, zinc acetate and magnesium chloride (0.5% weight of silane) and kept stirred for 8 h. During the synthesis of control resin stirring was continued for 8h, after the addition of 1 ml 6N NaOH. The hydrolyzed silane was kept at room temperature overnight for post condensation. The product obtained was then extracted with ether, washed with distilled water, till alkali free and dried. The photocured composites were prepared through a patented procedure [15]. Inorganic-organic hybrid resin (50 parts) diluted with triethylene glycol dimethacrylate (50 parts) was used as the resin matrix along with 0.5% Diphenyl (2, 4, 6-trimethylbenzoyl) phosphine oxide as the photoinitiator. 300 phr of silanated quartz and 12% fumed silica were used as filler. Other chemicals used for the preparation of resin mixture were 4(dime-

thyl amino) phenethyl alcohol, 4-methoxy phenol, phenyl salicylate, 2-hydroxy-4 methoxy benzophenone and 2, 6 di-tert-butyl -4-methyl phenol (which act as inhibitors, activators and uv stabilizers). Thermal stability of the synthesized resins was evaluated using thermogravimetry as per the international standard (ASTME-1131-98) using thermogravimetric analyzer (SDT-2960 TA Instruments Inc, USA) [16]. The heating rate used was 10°C/min, in nitrogen atmosphere.

The synthesized resins, filler and other additives were masticated in an agate mortar to get a uniform paste. The paste was packed in to a mold and exposed to visible light having the intensity $>300\text{mw/cm}^2$ for 60s on both sides using Prolite (Caulk/ Dentsply, US). Antimicrobial properties were evaluated under dynamic conditions as per – ASTM:E 2149 using E.coli ATCC2592 [17].

Results and discussion:

Compared to control (table 1), resin containing alkoxides of calcium, magnesium and zinc showed higher T_0 T_{50} value. It can be seen from table 1 that incorporation of 0.5 % of $\text{Ca}(\text{OH})_2$ to control resin increased the onset of decomposition temperature from 356.26°C to 443.79°C. whereas incorporation of 0.5 % of $\text{Zn}(\text{CH}_3\text{COOH})_2$ and MgCl_2 increased the onset of decomposition temperature from 356.26°C to 425.12°C and 420.37°C respectively (table 1). Higher T_0 and T_{50} values were obtained for CaR1 resin (table 1). 50% decomposition was occurred for CaR1 even at 968.71°C. The weight loss observed after T_{50} to 1000 °C (final degradation temperature) for CaR1 (0.48%), ZnR1 (1.36%) and MgR1 (2.17%) resins were negligibly small, leaving carbonaceous char (table 1). Major weight loss upto T_{50} may be due the decomposition of organic components in the resins. The percentage of carbonaceous char at 990 °C was 36.5 and a weight loss of 13.5% after T_{50} value indicates that inorganic content in the synthesized resins had influence in their thermal stability (table 1). Good thermal stability for CaR1, ZnR1 and MgR1 resins indicates effective bonding between the inorganic and organic components within the resin. Thermally stable bisphenol-A glycidyl methacrylate (Bis GMA) had versatile application in the field of dental restoration due to its aesthetics and good physic-mechanical properties. Here we used Bis GMA as the control material for antibacterial studies. The antimicrobial studies showed that ZnR1 exhibit 22.15 % reduction in E.coli ATCC 25922 compared to Bis GMA, CaR1 and MgR1 after 1 hour exposure (table 2).

Sample Code	Inorganic content added	T_0 (°C)	T_{50} (°C)	% residue at 990 °C
Control	Nil	356.26	477.32	36.5
CaR1	$\text{Ca}(\text{OH})_2$	443.79	968.71	49.52
ZnR1	$\text{Zn}(\text{CH}_3\text{COOH})_2$	425.12	589.99	48.64
MgR1	MgCl_2	420.37	649.15	47.83

Table 1: Effect of inorganic content on thermal behaviour of various resins (T_0 and T_{50} values).

Samples	Exposure time	Reduction in E.coli ATCC 25922 (%)
Bis GMA	1 hour	0
CaR1	1 hour	0
ZnR1	1 hour	22.15
MgR1	1 hour	0

Table 2: Comparison of antimicrobial study of CaR1, ZnR1 and MgR1 based photocured composites with control Bis GMA based composites using E.coli ATCC 25922 bacteria.**Acknowledgements:**

Financial support from Kerala State Council for Science, Technology and Environment, Government of Kerala, India is gratefully acknowledged. We thank, Director, Head and Dr. V. Kalliyana Krishnan, SIC Dental Products Laboratory, Biomedical Technology Wing, SCTIMST for extending the facilities in BMT Wing.

REFERENCE

1. Chin-Lung, C; Ri-Cheng, C; Yie-Chan, C. *Thermochimica Acta*, 453 (2007) 97–104. | 2. Zajicová, V; Exnar, P; Staová, I. *Ceramics – Silikáty*, 55 (2011) 221–227. | 3. Lizymol, P; P; Biological evaluation of a new organically modified ceramic-based dental restorative resin, *Journal of Applied Polymer Science*, 125 (2012) 620–629. | 4. Lizymol, P; P; Thermal Studies: A Comparison of the Thermal Properties of Different Oligomers by Thermogravimetric Techniques, *Journal of Applied Polymer Science*, 93 (2004) 977–985. | 5. Lizymol, P; P; Studies on Shrinkage, Depth of Cure, and Cytotoxic Behavior of Novel Organically Modified Ceramic Based Dental Restorative Resins, *Journal of Applied Polymer Science*, 116 (2010) 2645–2650. | 6. Lizymol P; P; Studies on new organically modified ceramics based dental restorative resins, *Journal of Applied Polymer Science*, 116 (2010) 509–517. | 7. LizymolPhiliposePampadykandathil, VibhaChandrababu. A process for the synthesis of inorganic-organic hybrid resins comprising of alkoxides or mixture of alkoxides of calcium, magnesium, zinc, strontium, barium and manganese with polymerisable (di/tetra) methacrylate groups, Patent Application Number 4027/CHE/2014. | 8. Jahangir AA, Nunley RM, Mehta S, Sharan A. Bone-graft substitutes in orthopedic surgery. AAOS Now 2008 2008. | 9. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. *Acta Biomater* 2012;8:1401–21 | 10. Daniel J. Hickey, BaturErcan, Linlin Sun, Thomas J. Webster, Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications, *Acta Biomaterialia* 14 (2015) 175–184 | 11. H. Kourlouides, T. Heriberto Cueto, W. Pigman, Rehardening of Softened Enamel Surfaces of Human Teeth by Solutions of Calcium Phosphates. *Nature* 189 (1961) 226–227. | 12. G. Cevc, P. Cevc, M. Schara, U. Skaleri, The caries resistance of human teeth is determined by the spatial arrangement of hydroxyapatite microcrystals in the enamel. *Nature* 286 (1980) 425–426. | 13. B. M. Santiago, D. A. Ventin Primo, L. G. Barcelos, Microhardness of dentine underlying ART restorations in primary molars: an *in vivo* pilot study. *British dental journal* 2 (2005) 199. | 14. A. Banerjee, M. Sherriff, E. A. M. Kidd, T. F. A. Watson, Confocal microscopic study relating the autofluorescence of carious dentine to its microhardness. *British dental journal* 12 (1999) 187. | 15. LizymolPhiliposePampadykandathil, VibhaChandrababu. A visible light cure dental restorative composite with excellent remineralization ability with good physico mechanical properties and low shrinkage based on a novel calcium containing inorganic organic hybrid resin with polymerizable methacrylate groups Patent Application Number 4996/CHE/2014. | 16. ASTM E1131-98 Standard Test Method for Compositional Analysis by Thermogravimetry, 1998. | 17. ASTM E2149 – 10 Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents under Dynamic Contact Conditions, 2010.