A 37-year-old chronic glomerulonephritis male was referred to our hospital on April 2010 with elevated white blood cell count. His white blood cell count was 349x10^9/L, his red blood cell count was 402x10^9/L, and his platelet count was 1540x10^9/L. The polymerase chain reaction of BCR-ABL was positive in his bone marrow cells. He was diagnosed with chronic-phase CML. In April 2013, he was hospitalized in our institution at the start of PD because his kidney function had worsened. Complete hematological response was not obtained by the hydroxyurea treatment. In July 2013, he was administered 200mg of imatinib, and we gradually increased the dose while paying close attention to potential side effects. The hydroxyurea was eventually stopped. The patient's imatinib concentration was obtained before itsmorning intake (trough level) and monitored during the imatinib treatment. The imatinib concentration gradually elevated based on the dosage increase. Although his white blood cell count decreased to 13x10^9/mL, his platelet levels to 710x10^9/mL. After a three-week administration of 800mg of imatinib, he suddenly rose when the imatinib concentration was maximal. b) The imatinib concentration gradually elevated based on dosage escalation. CK levels were decreased immediately after imatinib was discontinued (Fig. 1a).

In July 2013, he was administered 200mg of imatinib due to the progression of CML. We gradually increased the imatinib dose and monitored his blood concentration (Fig. 1b). After a six-week administration of 600mg of imatinib, his CK (954 U/L) elevated again with no symptoms, and his blood concentration of imatinib was 300 mg of ursodeoxycholic acid during the CK elevation. CK showed an increase in CK with rise of imatinib. The dose was gradually escalated but his treatment was changed to hydroxyurea because his kidney function worsened. Complete hematological response was not obtained by the hydroxyurea treatment. In April 2013, he was hospitalized in our hospital on the dosage increase. Although his white blood cell count decreased to 13x10^9/mL, his platelet levels to 710x10^9/mL. After a three-week administration of 800mg of imatinib, he suddenly rose when the imatinib concentration was maximal. b) The imatinib concentration gradually elevated based on dosage escalation. CK levels were decreased immediately after imatinib was discontinued (Fig. 1a).

Imatinib is mainly metabolized in the liver and eliminated in the biliary route [4]. Successful imatinib treatment was previously reported in CML or gastrointestinal stromal tumors with hemodialysis patients [5-7]. These reports showed that imatinib's maximum concentration was 3340ng/mL, its trough level was 1540ng/mL, and its half-life was 18.2 hours in patients who received 400mg. These changes of imatinib had almost the same metabolism as in patients who were administering the drug in normal renal function [5]. CK elevation was not complicated in these reports.

In our patient's case, the imatinib concentrations of the trough levels were 850 to 2639 ng/ml, which did not exceed previous reports in hemodialysis CML patients who were treated with imatinib. Although imatinib's concentration was not high, CK elevation developed. PD is the process of discharging waste by the peritoneum and approximates the kidney's operation from hemodialysis. But imatinib was not discharged by PD, so increase the burden on the liver due to congestive by the insufficient water removal or drug that resulted to consider prolongation or high peak of imatinib blood concentration unexpectedly. Unexpected side effects were considered during the imatinib administration before PD can be enforced stable.

Renal failure recovery is associated with a change of tyrosine kinase inhibitor from imatinib and dasatinib to nilotinib [8]. Some beneficial effects were also observed in a rat model [9]. Nilotinib may be more suitable to treat CML in such cases.

CK elevation is an important complication of CML patients with imatinib treatment for peritoneal dialysis. CK must be closely monitored to prevent the development of muscle injury. Nilotinib may be suitable for CML treatment with renal failure, especially when peritoneal dialysis is administered.

Figure legends
Fig. 1 Clinical course of imatinib treatment: a) Imatinib blood concentration gradually elevated based on dosage escalation. CK suddenly rose when the imatinib concentration was maximal. b) Imatinib blood concentration elevated based on imatinib dosages.

Yutaka Tsutsumi1, Shinichi Ito1, Hiroyuki Ohhigashi1, Souichi Shiratori1, and Takanori Teshima2

1Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
2Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan

Address correspondence to: Dr. Yutaka Tsutsumi, Department of Hematology, Hakodate Municipal Hospital, 1-10-1, Minato-cho, Hakodate, 041-8680, Japan.

Imatinib and Creatine Kinase in A Chronic Myeloid Leukemia Patient With Peritoneal Dialysis

Yutaka Tsutsumi, M.D
Department of Internal Medicine, Hakodate Municipal Hospital 1-10-1, Minato-cho, Hakodate 041-8680, Japan.
REFERENCE