
128 IJSR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH

Volume : 4 | Issue : 1 | January 2015 • ISSN No 2277 - 8179
Research Paper

Engineering

Nilam Patel Dept. Of E&TC ,D.N.Patel Collage Of Engineering, Shahada, NandurbarIndia.

Prof. J.H.Patil Dept. Of E&TC ,D.N.Patel Collage Of Engineering, Shahada, Nandurbar India.

FPGA Based Implementation of 16 bit RISC
Microcontroller

KEYWORDS : 16 bit microcontroller,
RISC, VHDL,FPGA,Xilinx.

ABSTRACT This project describes the design and implementation of some of the internal hardware components of a micro-
controller. The subsystems designed are the fundamental hardware components necessary to create the 16-bit timer’s

input capture and output compare modes, the index register, and other systems. The subsystems designed were the clock controller, the 16-bit
timer, the register controller, the register, and the comparator. The project engineers implemented their system using Xilinx to test their logic
and VLSI to construct the gates. VHDL code was written in order to implement the project onto an FPGA board.

INTRODUCTION
When the controller design become more complex inCISC and
the performance was also not up to expectations,people started
looking on some other alternatives. It hadbeen found that when
a processor talks to the memory thespeed gets killed. So the one
improvement on CPI was tokeep the instruction set very simple.
Simple in not the wayit works but the way it looks. That’s why
there are veryfew instructions in any typical RISC architecture
whereprocessor asks data from memory probably not other
thanLoad and Store. At the end the pipelining added a newdi-
mension in the speed just with the help of some Addition nal
registers, which increases throughput byreducing CPI. Hence the
instruction can be executedeffectively in one clock cycle[1].

A common misunderstanding of the phrase “ReducedInstruc-
tion Set Computer” is the mistaken idea thatinstructions are
simply eliminated, resulting in a smallerset of instructions. In
fact, over the years, RISC instructionsets have grown in size and
today many of them have alarger set of instructions than many
CISC CPUs. The term”Reduced” in that phrase was intended to
describe the factthat the amount of work any single instruc-
tionaccomplishes is reduced at most a single data memorycycle
compared to the “complex instructions” of CISCCPUs that may
require number of data memory cycles inorder to execute a sin-
gle instruction[2]. Mostmicroprocessors in today’s market are
based on eitherRISC or CISC architectures. Research has shown
thatRISC architecture greatly boosts computer speed by using-
simplified machine instructions for frequently usedfunctions.
The following features typically found in RISCbased systems.

1) Pre-fetching: The process of fetching nextinstruction or in-
structions into an event queue before thecurrent instruction
is complete is called pre-fetching.

2) Pipelining: Pipelining allows issuing an instructionprior to the
completion of the currently executing one.

3) Superscalar operation: Superscalar operation refers toa pro-
cessor that can issue more than one instructionsimultane-
ously.

ARCHITECTURE
The objective of the project is to design a 16-bit RISCproces-
sor which utilizesminimum functional units. The architecture
of proposed16-bit Processor is shown in Fig.1. The processorin-
corporates 16-bit ALU capable of performing 11arithmetical and
logical operations, 16-bit programcounter, 24-bit Instruction reg-
ister, Sixteen 16-bit generalpurpose registers, 3-bit flag register
to indicate carry, zeroand parity.

The processor has four states idle, fetch, decode andexecute. The
control unit provides necessary signalinteraction to perform ex-
pected function in all the states.

The main objective of this project is to design a RISC microcon-
troller usingVHDL and implement it in an FPGA. The micro-
controller instruction set and featuresare based on Atmel AVR
AT90S1200 RISC microcontroller.

Fig. 1. Architecture Overview

shows the top-level block diagram of the design, the bus struc-
ture hasbeen simplified, but every block represents a module to
be designed. At first glace, thereare 11 modules in the top-level,
with the 3 ports sharing the same module. These 11modules are
to be design separately using the top down design approach.
Some moduleslike the instruction register and status register are
easy to design, but modules like ALUand the control unit require
a lot of understanding. The overall dataflow and busstructure
between all the modules must be understand before designing
the modulesindividually.

There are basically two kinds ofbuses, direct bus and common
bus. Direct bus connects two modules directly and is usedspe-
cifically by the connected modules. There are many direct buses,
such as theconnection between program counter and program
ROM, between program ROM andIR, between register file and
ALU, etc. No control signals are required for direct buses.

The data bus is the onlycommon bus in this design. The data
bus provides connection between the generalpurpose regis-
ter file, ALU, status register, SRAM and all the I/O features. The
registerfile can only receive data from the data bus. All others
modules can receive and senddata to the data bus. Since there
are so many possible data flows, control signals arerequired to
control the correct flow direction. Only one source to the data
bus is allowedat a time. If not, logic contentions will happen and
the value of the data bus will beinvalid. Tri-state bus is used to
implement the common data bus. The impedance isso high that
it can be seen as unconnected to the bus system. If the ALU is

IJSR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH 129

Volume : 4 | Issue : 1 | January 2015 • ISSN No 2277 - 8179
Research Paper

the datasource, the data bus will be flooded with the result of
the ALU and is available to all theconnected modules. Control
logic will generate an enable signal for the real destinationto re-
ceive the data.The system can be divided into3 units, the fetch
unit, execute unit and I/O unit. Fetch unit is in charge of fetch-
ing thenext instruction and the execute unit is in charge of ex-
ecuting the current instruction. I/Ounit provide a connection
with the outside world. The fetch unit and execute unit formthe
CPU of the microcontroller.The first module of the fetch unit is
the program counter (PC). The PC containsthe address of the
next instruction to be executed. It points to the program ROM
tolocate the instruction. The instruction from the ROM is then
latched into the instructionregister (IR). The control unit takes
the content of the IR and decodes it. It then assertthe appropri-
ate control signals to execute the instruction. All modules are
connectedwith direct buses.

The execute unit in charge of executing most instructions. Nor-
mally, to executean instruction, 2 operands are output from the
register file to the ALU. The ALU thenperform the operation and
send the result to the data bus. Contents of the data bus (there-
sult) is then stored back to the register file. The ALU also evalu-
ate the status registerflags and send them directly to the status
register (SR). The whole execution process isdone in a single
cycle. The ALU perform many operations - include passing the
contentsof a general register to the data bus. SR also has a direct
bus connection to the controlunit required for branch evalua-
tion. The register file isaddressed directly by some bits in IR.

INSTRUCTION SET
The operation of the CPU is determined by the instruction it ex-
ecutes, referred toas machine instructions or computer instruc-
tions. The collection of different instructionsthat the CPU can
execute is referred to as the CPU’s instruction set. Since the in-
structionset defines the datapath and everything else in a pro-
cessor, it is necessary to study itfirst.

Table 1 shows the instruction set summary of the designed
microcontroller,while the instruction set summary of the origi-
nal AT90S1200 is shown.There are 92 instructions grouped into 4
categories: arithmetic and logic instructions,branch instructions,
data transfer instructions and the bit and bit-test instructions.
Asmentioned earlier, instruction set of the design is based on At-
mel AVR AT90S1200instruction set. In this way, the design can
use the same assembler and simulatorprovided by Atmel since
the final design is actually an AT90S1200 compatiblemicrocon-
troller.

Table 1. Basic Instruction set

Addressing Modes
There are 7 addressing modes in the microcontroller. Rd and Rr
are devoted tothe destination register and soure register.

1. Direct Single Register AddressingThe operand is in Rd.
2. Direct Double Register AddressingThe operands are in Rd and

Rr. Result is stored back to Rd.
3. I/O Direct AddressingFirst operand is one of the I/O registers.

The address is contained in 6 bits ofthe instruction word.
The second operand is either Rd or Rr. Used by IN andOUT
instructions to read from or write to the I/O registers.

4. Data Indirect AddressingOperand address is the contents of
the Z-register. Used when accessing theSRAM with LD and
ST instructions.

5. Data Indirect Addressing with Pre-DecrementZ-pointer is dec-
remented by 1 before the operation. Operand address is the-

decremented contents of the Z-register. Used when access-
ing the SRAMwith LD and ST instructions.

6. Data Indirect Addressing with Post-IncrementThe Z-register
is incremented by 1 after the operation. Operand address is
theoriginal content of the Z-register before increment. Used
when accessing theSRAM with LD and ST instructions.

7. Relative Program Memory AddressingProgram execution con-
tinue at address PC + offset. The offset is contains inthe in-
struction word. Unconditional branch instructions (RJMP,
RCALL) canreach the entire program memory from every
location. However, conditionalbranch instructions can only
reach –64 to 63 locations away from the currentaddress.

FINITE STATE MACHINE STATES
Fig.2 shows the state diagram of the finite state machine (FSM).
The 8states are EXE (execute), SLEEP, BRANCH1, BRANCH2,
SBICS (skip if bit in I/Oclear/set), CBISBI (clear/set bit in I/O),
ST and LD.

Fig.2. State Diagram
The state diagram shows the state flow but does not clearly
show the inputs. Theinputs to the FSM are the 46 output lines
of the instruction decoder, timer IRQ, externalIRQ, skip re-
quest and branch request. Branch request is generated by the
branchevaluation unit when the condition of the conditional
branch instruction is fulfilled.

SIMULATION RESULTS

The fig. 3 shows the simulation results for MVI instruction.The
instruction MVI R1 0005 is written at address 0000hof instruc-
tion memory. In the decode process destinationregister ‘Rz’ is
assigned with R1 and ‘immediate_value’ isassigned with 0005.
At the next positive edge of the clockcycle when ‘reg_wr’ signal
goes high, the value 0005indicated by ‘reg_wr_data’ is written
into the register R1.

Fig. 3 MVI

130 IJSR - INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH

Volume : 4 | Issue : 1 | January 2015 • ISSN No 2277 - 8179
Research Paper

REFERENCE
[1]. Mamun B, Shabiul I. and Sulaiman S,“A SingleClock Cycle MIPS RISC Processor Designusing VHDL” | [2]. Hamblen J.“ Synthesis, Simulation,
andHardware Emulation to Prototype a PipelinedRISC Computer System” | [3]. Zainalabedin N,“VHDL for Modeling and Designof Processing

Units” | [4]. Takanori M, Satoshi A and Masaaki I, “AMultithread Processor Architecture Based on theContinuation” | [5]. Kasuga-Koen, Kasuga, Fukuoka, “ The InnovativeArchi-
tecture for Future Generation HighPerformanceProcessors and Systems” | [6]. Virendra S. and Michiko I,“Instruction-BasedSelfTesting of Delay Faults in PipelinedProcessors”, IEEE
Transaction on VLSI systems,vol. 14, no.11,pp.1203-1215. | [7]. Patterson A. and Hennessy J,“ComputerOrganization & Design”, Morgan KaufmannPublishers, 1999 | [8]. Peter J
Ashenden,“Digital Design, An embeddedsystems approach using Verilog”, MorganKaufmann Publishers,2010 | [9]. Ramesh Gaonkar,“Microprocessor architecture,programming and
applications with the 8085”,Penram International Publishing,1989 |

CONCLUSION AND FUTURE WORK
As a conclusion, this project has been completed successfully
fulfilling are theobjectives and scopes specified. The author has
used his extra time to optimized thespeed of the design until 12
MHz. The data RAM that is not specified in the scope of thepro-
ject has also been included. Hardware stack is enlarged to 4-lev-
el instead of 3 and atotal of 24 I/O lines are available.

The design can be improved in number of ways. Toachieve a
more sophisticated design more features can beadded to the
current design. The number of instructionsthat the processor
supports can be increased. Pipeliningcan be added to improve
the performance of the proposeddesign.

