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ABSTRACT This project describes the design and implementation of some of the internal hardware components of a micro-
controller. The subsystems designed are the fundamental hardware components necessary to create the 16-bit timer’s 

input capture and output compare modes, the index register, and other systems. The subsystems designed were the clock controller, the 16-bit 
timer, the register controller, the register, and the comparator. The project engineers implemented their system using Xilinx to test their logic 
and VLSI to construct the gates. VHDL code was written in order to implement the project onto an FPGA board.

INTRODUCTION
When the controller design become more complex inCISC and 
the performance was also not up to expectations,people started 
looking on some other alternatives. It hadbeen found that when 
a processor talks to the memory thespeed gets killed. So the one 
improvement on CPI was tokeep the instruction set very simple. 
Simple in not the wayit works but the way it looks. That’s why 
there are veryfew instructions in any typical RISC architecture 
whereprocessor asks data from memory probably not other 
thanLoad and Store. At the end the pipelining added a newdi-
mension in the speed just with the help of some Addition nal 
registers, which increases throughput byreducing CPI. Hence the 
instruction can be executedeffectively in one clock cycle[1].

A common misunderstanding of the phrase “ReducedInstruc-
tion Set Computer” is the mistaken idea thatinstructions are 
simply eliminated, resulting in a smallerset of instructions. In 
fact, over the years, RISC instructionsets have grown in size and 
today many of them have alarger set of instructions than many 
CISC CPUs. The term”Reduced” in that phrase was intended to 
describe the factthat the amount of work any single instruc-
tionaccomplishes is reduced at most a single data memorycycle 
compared to the “complex instructions” of CISCCPUs that may 
require number of data memory cycles inorder to execute a sin-
gle instruction[2]. Mostmicroprocessors in today’s market are 
based on eitherRISC or CISC architectures. Research has shown 
thatRISC architecture greatly boosts computer speed by using-
simplified machine instructions for frequently usedfunctions. 
The following features typically found in RISCbased systems.

1) Pre-fetching: The process of fetching nextinstruction or in-
structions into an event queue before thecurrent instruction 
is complete is called pre-fetching.

2) Pipelining: Pipelining allows issuing an instructionprior to the 
completion of the currently executing one.

3) Superscalar operation: Superscalar operation refers toa pro-
cessor that can issue more than one instructionsimultane-
ously.

ARCHITECTURE
The objective of the project is to design a 16-bit RISCproces-
sor which utilizesminimum functional units. The architecture 
of proposed16-bit Processor is shown in Fig.1. The processorin-
corporates 16-bit ALU capable of performing 11arithmetical and 
logical operations, 16-bit programcounter, 24-bit Instruction reg-
ister, Sixteen 16-bit generalpurpose registers, 3-bit flag register 
to indicate carry, zeroand parity.

The processor has four states idle, fetch, decode andexecute. The 
control unit provides necessary signalinteraction to perform ex-
pected function in all the states.

The main objective of this project is to design a RISC microcon-
troller usingVHDL and implement it in an FPGA. The micro-
controller instruction set and featuresare based on Atmel AVR 
AT90S1200 RISC microcontroller.

Fig. 1. Architecture Overview 

shows the top-level block diagram of the design, the bus struc-
ture hasbeen simplified, but every block represents a module to 
be designed. At first glace, thereare 11 modules in the top-level, 
with the 3 ports sharing the same module. These 11modules are 
to be design separately using the top down design approach. 
Some moduleslike the instruction register and status register are 
easy to design, but modules like ALUand the control unit require 
a lot of understanding. The overall dataflow and busstructure 
between all the modules must be understand before designing 
the modulesindividually.

There are basically two kinds ofbuses, direct bus and common 
bus. Direct bus connects two modules directly and is usedspe-
cifically by the connected modules. There are many direct buses, 
such as theconnection between program counter and program 
ROM, between program ROM andIR, between register file and 
ALU, etc. No control signals are required for direct buses.

The data bus is the onlycommon bus in this design. The data 
bus provides connection between the generalpurpose regis-
ter file, ALU, status register, SRAM and all the I/O features. The 
registerfile can only receive data from the data bus. All others 
modules can receive and senddata to the data bus. Since there 
are so many possible data flows, control signals arerequired to 
control the correct flow direction. Only one source to the data 
bus is allowedat a time. If not, logic contentions will happen and 
the value of the data bus will beinvalid. Tri-state bus is used to 
implement the common data bus. The impedance isso high that 
it can be seen as unconnected to the bus system. If the ALU is 
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the datasource, the data bus will be flooded with the result of 
the ALU and is available to all theconnected modules. Control 
logic will generate an enable signal for the real destinationto re-
ceive the data.The system can be divided into3 units, the fetch 
unit, execute unit and I/O unit. Fetch unit is in charge of fetch-
ing thenext instruction and the execute unit is in charge of ex-
ecuting the current instruction. I/Ounit provide a connection 
with the outside world. The fetch unit and execute unit formthe 
CPU of the microcontroller.The first module of the fetch unit is 
the program counter (PC). The PC containsthe address of the 
next instruction to be executed. It points to the program ROM 
tolocate the instruction. The instruction from the ROM is then 
latched into the instructionregister (IR). The control unit takes 
the content of the IR and decodes it. It then assertthe appropri-
ate control signals to execute the instruction. All modules are 
connectedwith direct buses.

The execute unit in charge of executing most instructions. Nor-
mally, to executean instruction, 2 operands are output from the 
register file to the ALU. The ALU thenperform the operation and 
send the result to the data bus. Contents of the data bus (there-
sult) is then stored back to the register file. The ALU also evalu-
ate the status registerflags and send them directly to the status 
register (SR). The whole execution process isdone in a single 
cycle. The ALU perform many operations - include passing the 
contentsof a general register to the data bus. SR also has a direct 
bus connection to the controlunit required for branch evalua-
tion. The register file  isaddressed directly by some bits in IR.

INSTRUCTION SET
The operation of the CPU is determined by the instruction it ex-
ecutes, referred toas machine instructions or computer instruc-
tions. The collection of different instructionsthat the CPU can 
execute is referred to as the CPU’s instruction set. Since the in-
structionset defines the datapath and everything else in a pro-
cessor, it is necessary to study itfirst.

Table 1 shows the instruction set summary of the designed 
microcontroller,while the instruction set summary of the origi-
nal AT90S1200 is shown.There are 92 instructions grouped into 4 
categories: arithmetic and logic instructions,branch instructions, 
data transfer instructions and the bit and bit-test instructions. 
Asmentioned earlier, instruction set of the design is based on At-
mel AVR AT90S1200instruction set. In this way, the design can 
use the same assembler and simulatorprovided by Atmel since 
the final design is actually an AT90S1200 compatiblemicrocon-
troller.

Table 1. Basic Instruction set

Addressing Modes
There are 7 addressing modes in the microcontroller. Rd and Rr 
are devoted tothe destination register and soure register.

1. Direct Single Register AddressingThe operand is in Rd.
2. Direct Double Register AddressingThe operands are in Rd and 

Rr. Result is stored back to Rd.
3. I/O Direct AddressingFirst operand is one of the I/O registers. 

The address is contained in 6 bits ofthe instruction word. 
The second operand is either Rd or Rr. Used by IN andOUT 
instructions to read from or write to the I/O registers.

4. Data Indirect AddressingOperand address is the contents of 
the Z-register. Used when accessing theSRAM with LD and 
ST instructions.

5. Data Indirect Addressing with Pre-DecrementZ-pointer is dec-
remented by 1 before the operation. Operand address is the-

decremented contents of the Z-register. Used when access-
ing the SRAMwith LD and ST instructions.

6. Data Indirect Addressing with Post-IncrementThe Z-register 
is incremented by 1 after the operation. Operand address is 
theoriginal content of the Z-register before increment. Used 
when accessing theSRAM with LD and ST instructions.

7. Relative Program Memory AddressingProgram execution con-
tinue at address PC + offset. The offset is contains inthe in-
struction word. Unconditional branch instructions (RJMP, 
RCALL) canreach the entire program memory from every 
location. However, conditionalbranch instructions can only 
reach –64 to 63 locations away from the currentaddress.

FINITE STATE MACHINE STATES
Fig.2 shows the state diagram of the finite state machine (FSM). 
The 8states are EXE (execute), SLEEP, BRANCH1, BRANCH2, 
SBICS (skip if bit in I/Oclear/set), CBISBI (clear/set bit in I/O), 
ST and LD.

Fig.2. State Diagram
The state diagram shows the state flow but does not clearly 
show the inputs. Theinputs to the FSM are the 46 output lines 
of the instruction decoder, timer IRQ, externalIRQ, skip re-
quest and branch request. Branch request is generated by the 
branchevaluation unit when the condition of the conditional 
branch instruction is fulfilled.

SIMULATION RESULTS

The fig. 3 shows the simulation results for MVI instruction.The 
instruction MVI R1 0005 is written at address 0000hof instruc-
tion memory. In the decode process destinationregister ‘Rz’ is 
assigned with R1 and ‘immediate_value’ isassigned with 0005. 
At the next positive edge of the clockcycle when ‘reg_wr’ signal 
goes high, the value 0005indicated by ‘reg_wr_data’ is written 
into the register R1.

Fig. 3 MVI
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CONCLUSION AND FUTURE WORK
As a conclusion, this project has been completed successfully 
fulfilling are theobjectives and scopes specified. The author has 
used his extra time to optimized thespeed of the design until 12 
MHz. The data RAM that is not specified in the scope of thepro-
ject has also been included. Hardware stack is enlarged to 4-lev-
el instead of 3 and atotal of 24 I/O lines are available.

The design can be improved in number of ways. Toachieve a 
more sophisticated design more features can beadded to the 
current design. The number of instructionsthat the processor 
supports can be increased. Pipeliningcan be added to improve 
the performance of the proposeddesign.


