A 21-year-old male patient was referred to the Department of Conservative Dentistry & Endodontics, SVS Institute of Dental Sciences, Appannapally (Village), Yedira (Post), Mahabubnagar.

ABSTRACT

Trauma to a tooth during development might result in an open apex with pulpal necrosis followed by a periapical lesion. Single visit monoblock obturation with Biodentine along with a supply of growth factors through injectable plasma rich fibrin may prove useful for the predictable management of teeth with open apices. In addition, it may be considered as an alternative to the traditional apexification and obturation methods used. This report demonstrates the management of an open apex with periapical radiolucency in a maxillary left central incisor using Biodentine as an apical matrix barrier and obturating material.

KEYWORDS:

Open apex, triple antibiotic paste, injectable plasma rich fibrin, Biodentine.

INTRODUCTION

In permanent teeth, root development and closure of the root apex continues until three years post eruption (1). The occurrence of any trauma, caries or other pulpal pathosis during this period results in roots with wide canals and fragile walls accompanied by an open apex due a halt in dentine formation. Root canal instrumentation in such roots is impaired, and an adequate apical stop for condensing the filling material is unachievable.

Over three decades, platelet concentrations from autologous sources have been used as regenerative tools because of their ability to release supraphysiological doses of growth factors required for the induction of tissue regeneration (2, 3). Among them, platelet-rich fibrin (PRF), first termed by Choukroun et al. in 2001, was developed as a second generation autologous platelet concentrate without the use of any anticoagulants (4). PRF is a rich source of the growth factors found in platelets. These growth factors are involved in wound healing and are presumed to act as promoters of tissue regeneration (5, 6).

Biodentine (Septodont, Saint-Maur-des-Fossés, France) is a new, recently introduced, calcium silicate-based cement similar to mineral trioxide aggregate (MTA) (7). The physical and chemical properties of this material are similar to that of certain Portland cement derivatives. Due to its high biocompatibility (8), Biodentine™ has been claimed by manufacturers to be a more user-friendly bioactive dentin substitute (9).

Herein, we highlight the management of a maxillary left central incisor with an open apex and periapical radiolucency using a combination of injectable plasma rich fibrin (i-PRF) and Biodentine as a single visit, monoblock, obturating material.

CASE STUDY

A 21-year-old male patient was referred to the Department of Conservative Dentistry and Endodontics, SVS Institute of Dental Sciences, India, for the treatment of a maxillary left central incisor. The patient complained of pain in the upper front tooth, which was fractured due to trauma at the age of 8 years. His medical status was non-contributory. Intra oral examination revealed that tooth #9 was tender to percussion and palpation. Electric pulp test and cold test were non-contributory. Intra oral examination revealed that tooth #9 was discoloured with an open apex and periapical radiolucency using a combination of triple antibiotic paste, injectable plasma rich fibrin (i-PRF) and Biodentine as a single visit, monoblock, obturating material.

The tooth was isolated with rubber dam and a Class IV fracture with discolouration in relation to #9 was evident. Figure 1. Preoperative photograph showing Elli's Class IV fracture with discolouration in relation to #9.

INTRODUCTION

The tooth was isolated with rubber dam and a Class IV fracture with discolouration in relation to #9 was evident. Figure 1. Preoperative photograph showing Elli's Class IV fracture with discolouration in relation to #9.

Based on these findings, a diagnosis of open root apex with periapical abscess in relation to tooth #9 was made. Informed consent was obtained from the patient and an access cavity was prepared using an Endo Access bur (Dentsply Maillefer, Ballaigues, Switzerland) under rubber dam isolation. The working length was determined radiographically (Fig. 2b). Figure 2: a) Preoperative radiograph, b) Working length determination.

Chemo mechanical preparation was performed with a 808 K-file (Dentsply Maillefer Ballaigues, Switzerland) using a circumferential filing motion. The root canal was debrided with 3% sodium hypochlorite (NaOCl; Cmident, Cmident, New Delhi, India), 17% ethylenediamine tetraacetic acid (EDTA Smear clear, SybronEndo, CA, USA) and saline. Triple antibiotic paste (TAP), was prepared by mixing metronidazole, ciprofloxacin, and minocycline (1:1:1) in propylene glycol and used to disinfect the root canal space. After drying the root canal with sterile paper points, TAP dressing was placed and the access cavity was temporarily closed withIRM (Caulk, Dentsply, Milford, DE). The patient was recalled for three weekly appointments to change the TAP dressing.

At the end of the fourth session, the canal was completely dry, and the patient was asymptomatic. The tooth was isolated with rubber dam and TAP was removed from the canal by hand instrumentation. Irrigation was performed with 3% NaOCl (Cmident), 17% liquid EDTA Smear Clear (SybronEndo) and saline followed by drying the root canal with sterile paper points. The periapical area and root canal were rinsed with i-PRF to provide the growth factors.

To obtain the i-PRF, the patient's blood was withdrawn with a 8ml syringe and transferred to a 9 ml tube without any additive (Dry Vacutube, Biocon®, Brazil). The tube was then horizontally centrifuged (B-40, RDE®, Brazil) for 2 min at 2,700 rpm (5) resulting in the separation of the contents into an orange coloured liquid in the upper part (i-PRF) and the remaining blood materials below. i-PRF was carefully collected using a 2ml syringe (Injex®, Brazil) and injected immediately into the periapical lesion, allowing the excess to flow...
Biodentine was manipulated by pouring five drops of Biodentine liquid from a single-dose dispenser into a Biodentine capsule™ (Septodont), which was placed in a triturator for 30 s. The material obtained after trituration was collected, and delicately inserted into the root apex using a root-canal plugger (Fig. 3b).

Figure 3. a) i-PRF injected into the canal, b) Tooth being obturated with Biodentine.

Several increments were required to obturate the canal completely following which, composite resin was used to seal the access cavity. A radiograph confirmed the completion of the single visit monoblock obturation for the open apex (Fig. 4a). A post endodontic crown was not provided for the patient because he was planning to undergo orthodontic treatment for correction of misaligned teeth.

A 6-month follow-up showed no clinical symptoms. Radiographic examination revealed complete periapical healing and regeneration of the periapical tissues (Fig. 4b).

Figure 4. a) Post monoblock obturation, b) Six months post-operative.

DISCUSSION:

Many materials have been proposed for the closure of an open root apex. Non-setting calcium hydroxide was first used by Kaiser in 1964 (10); subsequently, calcium hydroxide was suggested for use as a permanent apical barrier (11-13). However, the disadvantages of this material include the unpredictable time required for apical barrier formation, patient compliance, need for multiple appointments, re-infection following loss of temporary restoration, and tendency for tooth fracture (14-16). Moreover, the apparently calcified barrier has been found to be porous and may sometimes contain small amounts of soft tissue (17). Hence, the use of a single visit apical closure seems to be a suitable alternate treatment option for open apex cases.

After the discovery of MTA by Torabinejad et al (18), it has become the material of choice for single visit apexification procedures in combination with canal back fill using gutta percha. Despite its many advantages such as biocompatibility, sealing ability, and cementogenesis, disadvantages such as long setting time, poor handling characteristics, and high cost resulted in the search for a new material.

Biodentine, was introduced by Septodont in September 2010 as a material of choice for single visit apexiﬁcation procedures in combination with i-PRF for the permanent dentine substitute material for damaged dentine. It was, Biodentine, was introduced by Septodent in September 2010 as a material of choice for single visit apexification procedures in combination with i-PRF for the non-surgical management of teeth with open apices and periapical lesions are merited.

REFERENCES:

18. Brasse WH, Rowe AH. A histological study of periapical tissues of incompletely formed incomplete root apex using a root-canal plugger (Fig. 3b).

interlukin-1 (IL-1), IL-6, IL-4, tumour necrosis factor alpha (TNF alpha), vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGF β1), platelet derived growth factors (PDGF), and insulin like growth factors (IGFs) (21), which are required for the regeneration of periradicular tissue, is especially in open apex cases. This property of i-PRF was utilized in the present study for the regeneration and fast healing of periradicular tissues.

CONCLUSIONS:

Resolution of periapical rarefaction and appearance of bony trabeculae with a thin layer of calcified tissue adjacent to the Biodentine barrier was observed during the 6-month recall period. The patient was asymptomatic with sound periodontal health. However, long-term follow-up is required in this case. Moreover, further studies using Biodentine monoblock obturation in combination with i-PRF for the non-surgical management of teeth with open apices and periapical lesions are merited.