INTRODUCTION

The term “Pancreatitis” refers to inflammation of the pancreas. It is highly variable in clinical presentation and severity. In majority of the patients, the course is mild and self-limiting, but in some patients it may become fulminant and progress to multisystem organ failure and death. Because of this potential for catastrophic deterioration, the stratification of severity is essential. Diagnosis and treatment of these pancreatic pathologies is widely based on clinical symptoms, laboratory and radiological findings.

Conventional radiography and USG has a limited role and value in diagnosis of pancreatitis. MDCT (Multidetector CT) is the primary modality for evaluation of pancreatitis. CT has greatly improved the visualization of pancreas. It is far superior to ultrasound as we can better visualise the pancreatic anatomy and surrounding structures and localize lesions. This article focuses on the imaging modality of CT and on its application in the evaluation of pancreatitis to arrive at the results.

AIMS AND OBJECTIVES

1. To note the CT imaging findings in case of pancreatitis.
2. To categorize and classify pancreatitis.
3. To study and evaluate associated CT features of acute and chronic pancreatitis.

MATERIALS AND METHODS

This prospective study was carried out over a period of 8 months (January-August 2017), with due permission from the ethics committee. The CECT Abdomen of 49 patients was performed, who were referred to the Department of Radiodiagnosis at Dr. Vasantrao Pawar Medical College, Hospital, Nashik with varied complaints. The clinical and demographic data were recorded after due consent to correlate the findings. The patients not willing to give consent were not included in the study.

All the CT scans were done on Siemens Somatom Perspective (128 slice) machine. CT scan of abdomen with axial and coronal reconstruction was performed which is a pre-requisite for detailed evaluation of pancreatic lesions. The density or attenuation of non-enhanced pancreas is normally the same as that of soft tissue, or somewhere between 30-50 Hounsfield units (HU). This increases to 100 to 150 HU after intravenous administration of contrast agents. Normally the Pancreas shows homogeneous enhancement.

RESULTS

From this study we can infer that pancreatitis show characteristic findings on CT study. These imaging characteristics coupled with clinical history and laboratory finding helps us to achieve an accurate diagnosis. Imaging techniques enable us to assess, grade and stage pancreatitis with a fair degree of reliability non-invasively. It also helps in designing a management plan for better patient care.

CONCLUSION:

Pancreatitis has highly variable clinical presentation and severity. Computerized tomography (CT) is the modality of choice for investigating pancreatitis. CT is not only very helpful to evaluate focal as well as diffuse lesions but also in evaluating the extent, nature of the lesion and involvement of adjacent structures can be clearly demonstrated.

PURPOSE:

The objective of our study was to study the CT findings of Pancreatitis and its associated features in a tertiary care centre.

MATERIALS & METHODS:

CT scan of 49 patients with pancreatitis were studied. All the CT scans were performed on Siemens Somatom Perspective (128 slice) machine.

RESULTS:

Majority of the patients in this study had imaging features of acute pancreatitis which comprised of 91.8% of patients. Interstitial edematous pancreatitis (IEP) was the most common type of pancreatitis seen in 71.4% of patients. In IEP, majority of the patients i.e. 77% had moderately severe pancreatitis and associated pseudocyst was seen in 37% of these patients. Abdominal pain and fever were the most common complaint. Alcoholism showed strong association with pancreatitis.

CONCLUSION:

From this study we can infer that pancreatitis show characteristic findings on CT study. These imaging characteristics coupled with clinical history and laboratory finding helps us to achieve an accurate diagnosis. Imaging techniques enable us to assess, grade and stage pancreatitis with a fair degree of reliability non-invasively. It also helps in designing a management plan for better patient care.

KEYWORDS

Interstitial edematous Pancreatitis (IEP), Necrotizing pancreatitis, Pseudocyst.
pseudocysts followed by APC seen in 20% of cases. In necrotizing pancreatitis 50% patients have WON and 50 % have ANC (Table 4).

• The most common finding in association with pancreatitis is pleural effusion seen in 63 % followed by ascites seen in 46% of the patients (Table 5).
• Location wise pseudocysts and WON were seen to occur most commonly in the tail of pancreas seen in 77.8% of the cases and showed most common association with dilated main pancreatic duct (MPD) in 56 % of the patients.
• All the patients with chronic pancreatitis show associated calcifications within the pancreatic parenchyma and one patient had an associated pseudocyst.

DISCUSSION
The pancreas is a retroperitoneal organ having exocrine as well as endocrine function. Since the pancreas is located relatively deep in the abdomen, its imaging by conventional methods has proved to be challenging. After the advent of MDCT detailed visualization and definition of deeper and smaller structures and subtle changes of density of the normal and abnormal pancreas are now possible. The scope of multiplanar reconstruction with MDCT scanners has improved remarkably the ability to visualize and understand complex anatomical structures and relationships (Figure 1A to 1F).

PANCREATITIS
Inflammation of the pancreas is known as pancreatitis. It may further be classified as acute or chronic pancreatitis. Acute pancreatitis is characterized and graded based on its severity according to the Revised Atlanta’s classification of 2013 as follows.

CLASSIFICATION:
1. Acute pancreatitis
 a. Interstitial edematous pancreatitis (IEP).
 b. Necrotizing pancreatitis
2. Chronic pancreatitis
 a. Calcifying chronic pancreatitis
 b. Obstructive chronic pancreatitis
 c. Autoimmune pancreatitis

ACUTE PANCREATITIS
Acute pancreatitis, an inflammatory disease of the pancreas, is mild and resolves itself without serious complications in 80% of patients, but it has complications and a substantial mortality in up to 20% of patients (8).

Etiology: Excessive alcohol intake and gallstones are the most common etiological factors. Other known causes include viral infections, such as mumps, cytomegalovirus and glandular fever, parasite infections, pancreas divisum, annular pancreas, abdominal trauma, surgery, ERCP, hypercalcaemia, hyperparathyroidism, hyperlipidaemia, drugs including steroids, thiazide diuretics and azathioprine, polyarteritis, and systemic lupus erythematosus.

Symptoms: One of the first symptoms of acute pancreatitis is pain in the epigastric region. The pain may be severe or constant in the abdomen or it may be radiating to the back and other areas. Other symptoms include nausea, vomiting and fever.

Complications: Presence of acute peripancreatic collections, pancreatic and extra-pancreatic pseudocysts, acute necrotic collections, walled off necrosis, pseudoneuromys with bleeding retroperitoneally or within the gut, fat necrosis, which may lead to hypocalcaemia, ascites, and splenic vein thrombosis, pleural effusion and bowel abnormalities are associated complications.

1. INTERSTITIAL EDEMATOUS PANCREATITIS (IEP):
 IEP is a diffuse inflammatory process involving the, the pancreatic and peripancreatic tissues, causing intermittent edema, enlargement and minimal organ dysfunction. The recovery is usually eventful. It is the milder and more common form of acute pancreatitis, seen in 85% of patients (9), and typically resolves within a week (10).

CT findings: Homogeneously enhancing pancreatic parenchyma with peripancreatic fat stranding, with / without acute peripancreatic collection or pseudocyst (Figure 2).

2. NECROTIZING PANCREATITIS:
Necrotizing pancreatitis has imaging features similar to that of acute pancreatitis but is associated with necrosis, organ failure and/or local complications.

CT findings: Necrotizing pancreatitis presents in three configurations:
- Combined pancreatic and peripancreatic necrosis (75%),
- Peripancreatic necrosis alone (20%) and
- Pancreatic necrosis alone (<5%) (11).

CT Classification Systems and CT Imaging Features
Pancreatitis in its many forms often presents complex diagnostic and management challenges. The severity of pancreatitis in this study has been scored using the Revised Atlanta’s classification (2013).

The disease severity is divided into mild, moderate and severe in accordance with Table 6.

CHRONIC PANCREATITIS:
It is a progressive fibro-inflammatory disorder characterized by intermittent or continuous abdominal or back pain (or both) due to the persistence of structural damage of the pancreas usually caused by many years of alcohol abuse. This damage result in loss of pancreatic parenchyma, functional insufficient (endocrine and exocrine) and complications such as biliary strictures, pseudocyst, and pseudoneuromys.

Other causes of chronic pancreatitis are congenital conditions such as pancreas divisum, cystic fibrosis, hypercalcaemia, hyperlipidemia or hypertriglyceridermia, some drugs and certain autoimmune conditions.

There are three principal forms of chronic pancreatitis:

1. Calcifying chronic pancreatitis:
 Acinar destruction, perilobular fibrosis with acute and chronic inflammatory cells, characterizes this type of chronic pancreatitis. A large proportion of cases present with recurrent bouts of abdominal pain and the eventual development of intraductal calculi. Causative factors include alcohol and tobacco use. There are hereditary, tropical, idiopathic, and senile forms; the senile form is often painless (12).

2. Obstructive chronic pancreatitis:
 Atrophy of the upstream pancreas due to tumor or post inflammatory ductal stricture leads to persistent obstruction of the pancreatic duct and is leads to obstructive chronic pancreatitis. It is often painless, occasionally it presents with clinically acute pancreatitis. Intraductal calculi are generally not seen (13).

3. Autoimmune pancreatitis:
 This is a chronic systemic lymphoplasmacytic inflammatory process involving the pancreas and other organs.

CT findings:
Pancreatic parenchymal atrophy, calcifications, irregular ductal stricture and structures are seen. The most specific CT manifestation of chronic pancreatitis is pancreatic calcifications or calculi (Figure 6A and 6B). Calcification is almost always inside the ductal system.

Pancreatic and Peripancreatic Fluid Collections
The most common complications of pancreatitis are pancreatic and peripancreatic fluid collections. These collections may be completely liquefied (fluid) or non-liquefied. In the revised Atlanta classification, an important distinction is made between fluid and non-liquefied collections (10).

1. Acute peripancreatic fluid collections (APFCs):
 Non-encapsulated collections which arise typically less than 4 weeks after the onset of acute pancreatitis are known as acute peripancreatic fluid collections. They are peripancreatic, rarely become infected, and generally resolve spontaneously (14). Acute peripancreatic fluid collections are predominantly found adjacent to the pancreas, without extension within the pancreatic parenchyma, and commonly reside within the lesser sac or anterior pararenal space (15). 5% to 15% of acute...
peripancreatic fluid collections persist beyond 4 weeks and are likely to become pseudocysts’.

CT appearance: They exhibit a homogeneous fluid appearance - hypodense on CT.

2. Pseudocysts:
Pseudocyst occurs as a complication of acute pancreatitis in approximately 10%–20% of cases. A pseudocyst may gradually transition into a walled-off necrosis within 4 weeks of onset of acute IEP. According to the revised Atlanta classification, pseudocysts contain non-necrotic fluid components within the fluid collection. The pseudocyst contains fluid with increased amylase and lipase activity due to communication with the pancreatic ductal system. However, many pseudocysts seal off such a communication and vanish spontaneously.

CT appearance: Pseudocysts exhibit fluid density (< 15 HU) within a well-defined capsule and are well-circumscribed, usually round or oval peripancreatic fluid collections. The capsule is smooth and symmetric and varies in appearance from barely perceptible to uniformly thick and may enhance after contrast agent injection (Figure 4). The presence or absence of communication of the pseudocyst with the pancreatic duct can be demonstrated and can be shown on contrast-enhanced CT images and curved planar reconstructions this helps in the management. An infected pseudocyst is diagnosed on CT images by the presence of gas within the pseudocyst.

3. Acute necrotic collections (ANCs):
Acute necrotic collections are non-encapsulated collections of inflammatory fluid and necrotic pancreatic or peripancreatic tissue that arise within the first 4 weeks of necrotizing pancreatitis. Acute necrotic collections are usually asymptomatic and undergo progressive liquefaction and decrease in size. Un-like acute peripancreatic fluid collections, acute necrotic collections may reside within the pancreatic parenchyma and are frequently associated with necrosis of the main pancreatic duct. An ANC may or may not have a connection to the disrupted pancreatic ductal system within the necrosis.

CT appearance: The identification of solid necrotic material on imaging is crucial for differentiating acute necrotic collections from acute peripancreatic fluid collections. Acute necrotic collections appear heterogeneous because of their liquefied and non-liquefied components, seen as irregular hyperdensities among hypodense fluid on CT.

4. Walled off necrosis (WON):
After 4 weeks from onset of necrotizing pancreatitis any apparent fluid collection that occupies or replaces portions of the pancreatic parenchyma should be called a WON. When necrotic tissues and acute necrotic collections mature and form a capsule a WON develops. The capsule is nonepithelialized, and the collection may contain septations within.

The outdated terms “organized pancreatic necrosis,” “necroma,” “pancreatic sequestration,” “pseudocyst associated with necrosis,” and “subacute pancreatic necrosis” are not to be used.

Approximately 90% of walled-off necrosis are located in the body or tail, but they can also be distant from the pancreas and frequently extend into the paracolic gutters.

CT appearance: A walled-off necrosis is an encapsulated fluid-density collection within a region that was previously necrotic tissue. WON contains necrotic pancreatic parenchyma or necrotic fat (Figure 5).

Distinction between WON and pseudocysts: Walled-off necrosis and pseudocysts may appear similar on imaging. Specific findings on CT indicative of walled-off necrosis over pseudocyst are larger size, extension to the paracolic or retrocolic space, irregular border, fat attenuation debris, thick or multiple septations, and pancreatic parenchymal deformity or discontinuity. Dilatation of the main pancreatic duct (> 4 mm) favours pseudocyst. The aforementioned findings have an accuracy rate of approximately 80% for differentiating walled-off necrosis from pseudocyst.

Other Complications:

CONCLUSION
Clinical findings of pancreatitis overlap, so imaging plays a great role in diagnosis. CT is the imaging modality of choice for evaluation of pancreatitis and allows better tissue characterisation and anatomical delineation. From this study we can indicate that pancreatitis show characteristic findings on pre and post contrast CT study. Complications of the pancreatitis can be better evaluated by CT which can help in diagnosis as well as treatment planning. Combination of contrast enhanced CT, clinical and laboratory findings add much more information in differentiation and grading of the pancreatitis non-invasively.

DECLARATIONS
Funding: None
Conflict of interest: None declared
Ethical approval: Not required

TABLE 1: DEMOGRAPHIC PROFILE

<table>
<thead>
<tr>
<th>Pancreatic pathology</th>
<th>Number of patients with associated alcohol consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute pancreatitis</td>
<td>28(62%)</td>
</tr>
<tr>
<td>Chronic pancreatitis</td>
<td>2(5%)</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
</tr>
</tbody>
</table>

TABLE 2: ASSOCIATION OF ALCOHOLISM WITH PANCREATITIS

<table>
<thead>
<tr>
<th>Pancreatic pathology</th>
<th>Number of patients with associated alcohol consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute pancreatitis</td>
<td>28(62%)</td>
</tr>
<tr>
<td>Chronic pancreatitis</td>
<td>2(5%)</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
</tr>
</tbody>
</table>

TABLE 3: CLASSIFICATION OF PANCREATITIS ON THE BASIS OF SEVERITY ACCORDING TO REVISED ATLANTAS CLASSIFICATION OF 2013

<table>
<thead>
<tr>
<th>SEVERITY OF PANCREATITIS</th>
<th>NUMBER OF CASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>8</td>
</tr>
<tr>
<td>Moderate</td>
<td>27</td>
</tr>
<tr>
<td>Severe</td>
<td>5</td>
</tr>
</tbody>
</table>

TABLE 4: TYPES OF COLLECTIONS IN PANCREATITIS ACCORDING TO REVISED ATLANTAS CLASSIFICATION OF 2013

<table>
<thead>
<tr>
<th>TYPES OF COLLECTIONS</th>
<th>NUMBER OF CASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudocyst</td>
<td>12</td>
</tr>
<tr>
<td>APC</td>
<td>7</td>
</tr>
<tr>
<td>ANC</td>
<td>5</td>
</tr>
<tr>
<td>WON</td>
<td>5</td>
</tr>
</tbody>
</table>
Table 5: Associated CT Findings with Pancreatitis

<table>
<thead>
<tr>
<th>CT Finding</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA- celiac artery</td>
<td>10</td>
</tr>
<tr>
<td>A-aorta</td>
<td>15</td>
</tr>
<tr>
<td>IVC- inferior vena cava</td>
<td>5</td>
</tr>
<tr>
<td>GT</td>
<td>2</td>
</tr>
<tr>
<td>AoA</td>
<td>1</td>
</tr>
<tr>
<td>Necrotic fluid</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 1A to 1F. Normal Anatomy of Pancreas and its Relations (Axial Cuts at the Level of Pancreas)

AXIAL CT SCAN CUTS:
CA- celiac artery.
A-aorta.
IVC- inferior vena cava.
B-body.
PV- portal vein.
H- Head of pancreas.
SMA- Sup. mesenteric artery.
T- Tail of pancreas.
2-2 part of duodenum.

ACUTE PANCREATITIS

TABLE 6: DEGREE OF SEVERITY IN REVISED ATLANTA CLASSIFICATION

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild acute pancreatitis</td>
<td>No organ failure, no local or systemic complications</td>
</tr>
<tr>
<td>Moderately severe acute pancreatitis</td>
<td>Organ failure that resolves within 48 h (transient organ failure) and/or local or systemic complications without persistent organ failure</td>
</tr>
<tr>
<td>Severe acute pancreatitis</td>
<td>Persistent organ failure (>48 h), single organ failure, multiple organ failure</td>
</tr>
</tbody>
</table>

Figure 2. Acute Pancreatitis with Acute Peripancreatic Collection

Image Features-
- Straight arrow: Acute peripancreatic collection
- Curved arrow: Dilated main pancreatic duct
- Line arrow: Homogeneously enhancing Bulky pancreas

NECROTIZING PANCREATITIS

FIGURE 3A. ACUTE NECROTIZING PANCREATITIS

Image Features-
- Straight arrow: Air within the pancreatic collection
- Curved arrow: Acute necrotic collection
- Line arrow: Heterogeneously enhancing pancreas with necrotic areas

FIGURE 3B. ACUTE NECROTIZING PANCREATITIS

Image Features-
- Straight arrow: Heterogeneously enhancing pancreas with necrotic areas
- Curved arrow: Areas of necrosis within the pancreas
- Line arrow: Acute necrotic collection

PANCREATIC COLLECTIONS

PSEUDOCYST

FIGURE 4. PANCREATIC PSEUDOCYST
REFERENCES

4. Banks PA, Freeman ML; Practice Parameters Committee of the American College of Gastroenterology, Practice guidelines in acute pancreatitis. Am J Gastroenterol 2006;101:2379-2400