UNUSUAL FORMATION OF MEDIAN NERVE AND OCCURRENCE OF MUSCULO-APONEUROTIC BAND IN THE COURSE OF MEDIAN NERVE IN ARM: A CLINICO-ANATOMICAL STUDY

Anatomy

Deepika Poonia MBBS, MD-Senior Resident, Department of Anatomy, Maulana Azad Medical College, New Delhi, India

Anita Mahajan* MBBS, MD-Professor, Department of Anatomy, Maulana Azad Medical College, New Delhi, India *Corresponding Author

Sabah Yaseen Shah MBBS, MD-Senior Resident, Department of Anatomy, Maulana Azad Medical College, New Delhi, India

Sabita Mishra MBBS, DNB, PhD-Director, Professor and Head of Department, Department of Anatomy, Maulana Azad Medical College, New Delhi, India

ABSTRACT

Median nerve is one of the commonly involved nerves in peripheral neuropathy of the upper limb. Peripheral neuropathies may occur due to various intrinsic (medical conditions like diabetes mellitus & Guillian Barre syndrome) and extrinsic (nerve entrapment) causes. This study reports an unusual case of median nerve which can be considered as cause of such entrapment neuropathy. During routine dissection on a 76 years old male cadaver unusual formation and variant course of median nerve was noted. In present study unusual relation of the medial root of median nerve with axillary artery was found at the origin and secondly the nerve was found coursing under the musculo-aponeurotic band located on the antero-medial side of lower one-third of the right arm. These observations are important as the aponeurotic band may compress the median nerve and may results in entrapment neuropathy. The comprehensive knowledge of possible variant anatomical relations of median nerve are of great importance to understand the cause of symptoms and to facilitate early diagnosis and prompt management of patient presenting with median nerve compression.

KEYWORDS

Compression; entrapment; fascia; neuropathy.

INTRODUCTION

An entrapment neuropathy may results when the nerve traverses a fibro-osseous canal and is fixed relatively. The most common site of median nerve (MN) entrapment is below flexor retinaculum in the carpal tunnel (Andreisik G, 2006). Other sites of compression due to variant anatomical structures have been described in the forearm and lower part of the arm (Caetano EB, 2015; Dellon AL and Mackinnon SE, 1987; Spinner M, 1970; Tubbs RS, 2011; Caetano EB, 2017; Jelly L and Georgiev G, 2009).

Mechanical irritation of the nerve due to any rare variant anatomical structure must be considered in cases with unexplained peripheral neurological symptoms. Thus variations must be reported to assist surgeons in better understanding and management planning to alleviate neurological symptoms (Bilecenoglu B, Aysun Uz and Nazim Karalezli, 2005).

Median Nerve is formed by the union of two roots-medial [C8, T1] and lateral [C5, 6, 7] anterior or lateral to the third part of axillary artery where medial root of MN crosses axillary artery anteriorly. MN then descends in the arm lateral to brachial artery; in the middle of the arm, MN crossed behind the brachial artery, descended medial to it in the musculoaponeurotic tunnel. MN coursed through this musculoaponeurotic tunnel in the lower one-third of the arm. The floor of this tunnel was formed by the variant oblique musculo-aponeurotic band, whereas the roof was formed by brachialis muscle. Brachial artery located lateral to the MN, passed superficial to the musculo-aponeurotic band.

On being traced, the variant band became thin and continued with the deep fascia covering brachialis supero-laterally and with the fascia covering humeral head of pronator teres infero-medially. During this course of MN spreads lateral to the MN, to the third part of brachial artery where medial root of MN crosses anteriorly (Figure 1(a), (b)). Upper and lower edges merged with the neighbouring connective tissue. The nerve was traced distally to check other possible sites of entrapment. We did not find any other MN entrapment site.

Histological examination revealed presence of few skeleton muscle fibers within the aponeurotic band (Figure 2).

Figure 1(a), (b) show unusual formation and course of median nerve and axillary artery.

Figure 2 shows transverse and longitudinal sections of skeleton muscle fibers within the aponeurosis.
Peripheral neuropathies may be due to intrinsic causes such as in diabetes mellitus, poly-arthritis nodosa, Sjogren's disease, Guillain-Barre syndrome and Berger's disease or extrinsic causes like nerve compression i.e. entrapment neuropathy. Among the three major peripheral nerves in forearm, prevalence of neuropathy is highest in ulnar nerve (67.3%) followed by median nerve (51.9%) and lowest in radial nerve (4.8%)(Luks R et al, 2015).

Neuropathy due to MN compression is a common cause of peripheral nerve entrapment neuropathy. The causes of MN entrapment in forearm have been extensively studied. According to various studies, MN is prone to get entrapped due to anatomic impingement below flexor retinaculum, Gantzer muscle, variant origin of pronator teres and flexor digitorum superficialis, brachialis muscle and lacertus fibrosus (Caetano EB 2015; Dellon AL and Mackinnon SE 1987; Spiller M, 1970; Bilecenoglu B, Aysun Uz and Nazim Karalezli, 2005).

Neuropathy due to MN compression is a common cause of peripheral nerve entrapment neuropathy. The causes of MN entrapment in forearm have been extensively studied. According to various studies, MN is prone to get entrapped due to anatomic impingement below flexor retinaculum, Gantzer muscle, variant origin of pronator teres and flexor digitorum superficialis, brachialis muscle and lacertus fibrosus (Caetano EB 2015; Dellon AL and Mackinnon SE 1987; Spiller M, 1970; Bilecenoglu B, Aysun Uz and Nazim Karalezli, 2005).

According to Meyer P et al (2018) apaneurotic bands over-riding a neural tissue may partially interrupt the axoplasmic flow which may results in neuralgia. Furthermore, persistent stretching of MN and mechanical compression may result in neural ischemia and hence increased permeability resulting in interstitial edema which further exaggerates nerve fiber compression resembling compartment syndrome.

The cause of the variation may be explained by considering the embryogenesis of arterial system of upper limb. According to Rodriguez-Niedenfuhr et al (1995) formation of arterial system in upper limb commences with the formation of deep axial artery and superficial brachial artery, both connected by multiple anastomotic channels. During development due to hemodynamic predominance, deep axial artery persists whereas superficial brachial artery and anastomotic channels disappear. Abnormal persistence of these arteries, results in variant course and relations of brachial artery. According to Park K.W. (2004) Netrin-1 secreted by limb buds during embryonic life attracts both developing blood vessels and neural tissue. Alteration in Netrin-1 secretion explains the existence of vascular and peripheral nerve variations seen in the present cadaver.

CONCLUSION
Awareness about the variant relations of neurovascular bundles in upper limb may prevent undue trauma during laparoscopic approach of shoulder joint (Broadman ND, Cofield RH (1999). This report also emphasizes surgically important relationship between MN and deep fascia in arm. The comprehensive knowledge of probable anatomic structures roofing neural tissue in the limbs can help clinicians to answer the cause of symptoms due to nerve compression which may require surgical release.

Ethical consideration
This cadaveric study was done on a voluntarily donated body, dissected for the teaching of MBBS students and hence no ethical consideration was required.

Conflict of interest
The Authors declare that they have no potential conflict of interest.

REFERENCES