# **INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH**

## REVIEW OF SURGICAL MANAGEMENT OF FLEXION DISTRACTION INJURY OF THE DORSO-LUMBAR SPINE

| Orthopaedics               |               |                                                                |  |  |  |  |  |  |
|----------------------------|---------------|----------------------------------------------------------------|--|--|--|--|--|--|
| Dr. Bimlesh Kumar<br>Bimal | Senior Reside | ent, Deptt of orthopaedics, IGIMS Patna.                       |  |  |  |  |  |  |
| Dr. Shailesh<br>Kumar      | Senior Reside | ent, Deptt of orthopaedics, IGIMS Patna.                       |  |  |  |  |  |  |
| Dr. Kumar Nitesh           | Senior Reside | ent, Deptt of orthopaedics, IGIMS Patna.                       |  |  |  |  |  |  |
| Dr. Shanawaz<br>Hussain*   | Senior Reside | ent, Deptt of orthopaedics, IGIMS Patna. *Corresponding Author |  |  |  |  |  |  |
|                            |               |                                                                |  |  |  |  |  |  |

# ABSTRACT

**Background-** internal fixation of the thoraco-lumbar spine fracture in pregnancy has specific concerns during surgery like positioning, approach, and radiation exposure to fetus. We report a case of burst fracture of 12th thoracic vertebrae with paraplegia in a young female with 26 weeks of gestation. Surgery was performed in prone position on a Toronto frame. This report also discusses the management of thoraco-lumbar spine fracture in pregnancy with review of literature.

**Conclusion-**Spinal fracture and cord injury in pregnancy are Complex issue the treatment plan should be individualized by weighing the risk and benefits of conservative against the surgical management.

# **KEYWORDS**

Dorso-lumbar fracture, Pregnancy, Toronto Frame

## INTRODUCTION

Fracture spine in pregnancy is uncommon. They occur following traumatic event; however, relative osteoporosis of pregnancy is found to be associated. There are only few reports which discuss the management of thoraco-lumbar spine fracture in pregnancy [3–8]. We report a case of 26-week pregnancy with traumatic fracture of twelfth thoracic vertebrae (D12) with paraplegia, which was operated in prone position on Toronto frame.spinal fracture also called vertebral fracture a broken back is a fracture affecting the vertebrae of the spinal codumn. Most types of spinal fracture confer a significant risk of spinal cord injury.

If the fracture is unstable, that is likely to change aligment without internal or external fixation.

Distraction is where is a pulling apart of the vertebrae .distraction injuries generally cause breaks in osous and ligamentous structures, and are therefore generally unstable a distraction injury on the posterior side of a vertebra can lead to a compression fracture on its anterior side.

### **Case History**

A 28-year-old female with 26 weeks of gestation (G3P2L2) had a history of fall from ladder, came to casualty after referral from other primary care center of a remote place, presenting after 36 h with severe back pain and inability to move both lower limbs since fall. She had no history vaginal bleeding, pain in abdomen, or loss of consciousness. Pulse was 88/min, blood pressure—128/76 mmhg. Her fundal height on examination was approximately 26 weeks, fetal heart rate-156/min. Per vaginal examination was normal. Spine examination revealed tenderness at dorso-lumbar junction. Neurologically patient had total spinal cord injury below L1 segment level, Knee and ankle reflexes were exaggerated. Urgent ultrasonography (USG) of abdomen showed normal fetus with no other organ injury. After taking consent from patient, plain radiograph of thoraco-lumbar spine was taken. X-ray showed anterior wedging of D12 vertebra (Fig. 1a). MRI showed burst fracture of D12 vertebra with cord compression (Fig. 1b). A decision of posterior surgical decompression was taken, after explaining the risk of maternal and fetal complications. Toronto frame was assembled and fixed to the radiolucent operating table. Patient was placed in a prone position on Toronto frame (Fig. 2), and height of the frame was adjusted so as the abdomen remained free (Fig. 3). The major advantage of this frame was minimal pressure on abdomen or pelvis, while the patient was supported in prone position by her shoulder and iliac crest. Before procedure FHS was assessed with handheld Doppler and intraoperative monitoring of fetal heart sounds was done by cardiotocogram machine with FHS belt.



**Fig.1 A** Plain radiograph thoraco-lumbar spine showing anterior wedging of D12 vertebra. **B** MRI T2W sagittal image showing fracture D12 vertebra with cord compression, note the fetus in the uterus



Fig. 2 Toronto/scoliosis Operating Frame

Care was taken to avoid blood loss and hypovolemia which could cause fetal brady- cardia. Fetal bradycardia if occured was decided to be managed with rapid intravenous ringer lactate infusion, high flow

#### Volume - 10 | Issue - 02 | February - 2021

oxygen inhalation, and if required left lateral position. Care was taken to finish procedure rapidly and achieve hemostasis to prevent hemorrhage. A D12 laminectomy with posterior decompression and short-segment pedicular screw fixation was done (Fig. 4). Postoperative period was uneventful and Doppler done immediately after the surgery did not show any evidence of fetal distress. Patient neuro- logical status remained same during the indoor stay. At discharge, paraplegia care instructions were given and patient was mobilized in wheelchair with Taylors brace. At 39th week of pregnancy patient delivered, a healthy 2.8-kg baby by caesarian section under general anaesthesia. At recent follow-up of 2-year patient was paraplegic with partial recovery of bowel and bladder function.

### Discussion

The treatment of spine fractures in pregnancy is poorly described in orthopaedics literature. Most of the reported cases discuss the obstetric aspect of this issue. Sur- gical indications, at a fundamental level involve a com- parison of relative risks and benefit of two different treatment methods. Surgical management of spinal fracture in pregnancy carries a risk to both mother and fetus due to positioning, blood loss, and inherent risk of anaesthesia. Conservative management, on the other hand, precludes the early mobilization thus exposing the patient to hazards.



Fig. 3 Patient Was Given Prone Position On Toronto Frame, So The Abdomen Remained Free

of immobilization like deep venous thrombosis (pregnancy itself is a major risk factor for deep venous thrombosis) and pulmonary complications. An individualized approach is thus recommended in managing spinal surgery in preg- nancy. It is always prudent to postpone the surgery until after delivery if the patient is near term; however, in earlier weeks of pregnancy, unstable spinal column injury and incomplete neurological deficit are definite indications to contemplate the surgery.

The surgical approach and positioning for these thoraco- lumbar fractures in pregnancy is also a debatable issue. Anterior approach has advantage of avoiding pressure on gravid uterus. However, in later weeks of gestation where gravid uterus reaches up to xiphisternum, approaching the thoraco-lumbar spine is difficult by anterior approach. Posterior approach has disadvantages of pressure on gravid uterus due to positioning and need of radiation exposure for pedicular screw fixation. Relton et al. [10] described a specialized frame (Toronto frame) for reducing blood loss in scoliosis surgery in prone position by relieving the extrinsic pressure on IVC. The frame consists of four supports with 45° inward tilt, which are arranged in two V-shaped pairs supporting the lateral aspects of the upper thoracic cage and anterolateral aspects of the pelvic girdle between the iliac crests and the greater trochanters. With suitable adjustment, this frame gives adequate support and prevents extrinsic pressure on abdomen. Utilization of the same frame in our patient had worked to our advantage and we could give prone position without causing external pressure on the gravid uterus.

The hazardous effect radiation exposure as mentioned earlier is a peculiar concern in stabilizing spinal fractures by posterior approach. The potential biological effects of in utero radiation exposure of a

developing fetus include prenatal death, intrauterine growth restriction, small head size, mental retardation, organ malformation, and child- hood cancer [11]. The gestational age and the level of absorbed dose are important factors in occurrence of these effects. Most of the teratogenic effects of radiation occur because of exposure during the first trimester (period of organogenesis). From the 16th to the 25th week, very large doses of radiation are required to cause fetal malformations because of reduced radio sensitivity and after the 25th week major fetal malformations and functional anomalies highly improbable [12]. In our patient, because of gesta- tional age of 26 weeks, we could use fluoroscopy for pedicular screw fixation. Nevertheless, care was taken to keep radiation exposure to minimum possible level.



Fig. 4 Postoperative Radiograph: Short-segment Fixation Done With Pedicular Screws

Pregnancy complicated by traumatic paraplegia carries risk to fetus. Goller et al. [13] had done a retrospective investigation on pregnancy in paraplegic patients. He concluded that pregnancy complicated by paraplegia is threatened more than in normal circumstances by: (a) The trauma itself.

(b) The immediate posttraumatic situation of the patient.

(c) By chronic infections and anaemia in pregnancies following the spinal cord injury.

We reviewed the literature on management of spinal trauma in pregnancy (Table 1) and we could fine only a few cases that have been managed by posterior approach. Martinez [7] described D12-L1 fracture dislocation oper- ated by posterior approach at 9-week pregnancy. They calculated the maximum allowable safe dose of radiation and limited the radiation exposure below teratogenic level. In early weeks of pregnancy, the gravid uterus remains intra pelvic, and hence, there is a little fear of extrinsic compression. Paonessa [4] had described a case of D7–D8 fracture dislocation at 22 weeks of pregnancy treated by posterior fusion using Leque's rod. However, the details of positioning were not discussed in this paper.

### **CONCLUSION-**

spinal fractures and cord injury in preg- nancy are complex issue. The treatment plan should be individualized by weighing the risk and benefits of con- servative against the surgical management. A specialized frame described by Relton et al. [10] can be utilized to avoid pressure on gravid uterus in case posterior surgery in contemplate.

### PRINT ISSN No. 2277 - 8179 | DOI : 10.36106/ijsr

#### Volume - 10 | Issue - 02 | February - 2021

| Table 1 Review of literature on various spine injuries in pregnancy with management and outcome |                            |                         |           |               |                        |                                                                         |                                                  |                  |                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                 |                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------|----------------------------|-------------------------|-----------|---------------|------------------------|-------------------------------------------------------------------------|--------------------------------------------------|------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                 | Author                     | Level                   | Gestation | Age<br>(year) | MOI                    | Clinical presentation                                                   | Neurology                                        | Asso.#           | Intra op<br>position   | Management                                                                                                                                                                                                                          | Outcome                                                                                                                                                                         | Comments/complication                                                                                                                            |
| 1                                                                                               | Paonessa<br>[4]            | D7-8 #<br>dislocation   | 22 weeks  | 27            | RTA                    | Hypotension,<br>with B/L<br>pnuemothorax,<br>no fetal distress          | ASIA A at D8                                     | Multiple<br>rib# |                        | Posterior<br>instrumentation with<br>luque rods D4-D11.<br>No bracing                                                                                                                                                               | Uneventful<br>rehabilitation,<br>presented at<br>34 weeks with<br>SROM,<br>elective CS for<br>failure of<br>labour<br>At 1 year FU<br>Solid fusion<br>with same<br>neurostatus  |                                                                                                                                                  |
|                                                                                                 | Tachnev<br>[3]             | T12-L1 #                | 7 month   | 20            | RTA                    | -                                                                       | No                                               | _                |                        | Bed rest, mild spinal<br>extension on pillows<br>till delivery                                                                                                                                                                      | C–S                                                                                                                                                                             | Following pregnancy<br>presented with,<br>increasing back pain and<br>intermittent paresthesia,<br>required<br>postinstrumentation and<br>fusion |
| 3                                                                                               | o                          | T12-L1#                 | 6 month   | 19            | RTA                    | Spontaneous<br>abortion within<br>24 h                                  | No                                               | _                |                        | Conservative—bed<br>rest and orthosis                                                                                                                                                                                               | Segmental<br>instability<br>with kyphotic<br>deformity and<br>development<br>of<br>neurodefecit,<br>rx with<br>posterior<br>fusion<br>Final outcome<br>improved<br>neurodefecit |                                                                                                                                                  |
| 4                                                                                               | Snake [5]                  | D5,8                    | 19 weeks  | 24 years      | RTA                    | Back pain                                                               | No                                               | -                |                        | Anterior<br>thoracoscopicassted<br>reduction and<br>stabilization @ D8<br>level                                                                                                                                                     | Uneventful,<br>solid fusion @<br>12 months                                                                                                                                      |                                                                                                                                                  |
| 5                                                                                               | Glison [6]                 | C6–7<br>subluxation     | 26 weeks  | 30            | RTA                    | Neurogenic<br>shock, neck<br>pain, LRTI in<br>1st week of<br>admission? | Paraplegia with<br>sensory level<br>@ D10        |                  |                        | Cervical traction and<br>management of<br>neuro-shock<br>followed by anterior<br>spinal fusion<br>Induction labour @<br>38 week                                                                                                     | Improvement in<br>hemodynamic<br>and<br>pulmonary<br>status after<br>spine sx                                                                                                   | Stabilization of cx spine<br>permitted nursing of<br>patient in upright<br>position                                                              |
| 6                                                                                               | Martinez<br>Padilla<br>[7] | D12-L1 #<br>dislocation | 9 weeks   | 31            | Direct                 | Severe back pain                                                        | ASIA E                                           |                  |                        | Posterior stabilization<br>by transpedicular<br>fixation D11-L3<br>during pregnancy<br>followed by<br>mobilization with<br>brace. Elective<br>Caesserian<br>Section atterm.<br>Anterior BG from<br>D12-L2 6 weeks<br>after delivery | Loss of<br>correction at<br>10 weeks after<br>1st surgery<br>without<br>significant<br>clinical<br>manifestations                                                               | The radiation dose did not<br>exceed the allowable<br>cumulative dose                                                                            |
| 7                                                                                               | Lenarz [1]                 | D12 burst #             | 17 weeks  | 39            | Fall<br>from<br>height | Back pain and<br>wrist pain<br>H/O<br>paranoid SZ                       | Paraparesiswith<br>bowel bladder<br>incontinence | DER#             | Rt lateral<br>position | Anterior<br>decompression by<br>retroperitoneal<br>approach with<br>anterior fixation<br>from D11-L1 along<br>with carbon fibre<br>cage and BG. Was<br>mobilized without<br>brace. Delivered by<br>CS                               | Complete<br>Recovery of<br>power and<br>bowel bladder<br>continence<br>With bony<br>fusion.                                                                                     | Author considered anterior<br>approach was the best<br>option to provide safe<br>positioning of the mother                                       |
| 8                                                                                               | Kuzkoisky<br>[8]           | C1–2 #                  | 15 weeks  | 40            | RTA                    | -                                                                       | -                                                | # ribs           | Prone                  | Posterior cervical spinal fusion                                                                                                                                                                                                    | Uneventful<br>postoperative<br>course and full<br>recovery                                                                                                                      | Aggressive and timely<br>surgical and anaesthetic<br>management may be life<br>saving                                                            |

#### REFERENCES

- Lenarz CJ, Wittgen CM, Place HM (2009) Management of a pregnant patient with a burst fracture causing neurologic injury. JBone JtSurg Am 91:1747–1749 Sarikaya S, Ozdolap S, Acxikgo"z G, Erdem CZ (2004) Preg-nancy-associated osteoporosis with vertebral fractures and scol- iosis. JtBone Spine 71:84–85 1.
- 2
- Tanchev P, Dikov D, Novkov H (2000) Thoracolumbar distrac- tion fractures in advanced pregnancy: a contribution of two case reports. Eur Spine J 9:167–170 3.
- 4 5.
- Paonessa K, Jernand R (1991) Spinal cord injury and pregnancy. Spine 16:596–598 Schnake KJ, Scholz M, Marx A, Hoffmann R, Kandziora F (2011) Anterior, thoracoscopic-assisted reduction and stabiliza- tion of a thoracic burst fracture (T8) in a pregnant woman. Eur Spine J 20:1217–1221 6.
- 7.
- Bilson GJ, Miller AC, Clevenger FW, Curet LB (1995) Acute spinal cord injury and neurogenic shock in pregnancy. Obstet Gynecol Surv 50:556–560 Mart nez-Padilla LA, Santana-Reyna MA, D taz-Ruiz OS, Silva-Escalante D, Dufoo-Olvera M, Garc ia-Lopez OF et al (2010) Fracture dislocation of the thoracolumbar spine in pregnant patient: diagnostic by image and treatment. Acta Ortop Mex 24:100–107
- 24.100–107 Kuczkowski KM, Fouhsy SA, Greenberg M, Benumof JL (2003) Trauma in pregnancy: anaesthetic management of the pregnant trauma victim with unstable cervical spine. Anaesthesia 58:822 8.
- Popov I, Ngambu F, Mantel G, Rout C, Moodley J (2003) Acute spinal cord injury in pregnancy: an illustrative case and literature review. 23:596–598 9
- Relton JE, Hall JE (1967) An operation frame for spinal fusion. A new apparatus designed to reduce haemorrhage during operation. J Bone Jt Surg Br 49(2):327–332 10

McCollough CH, Schueler BA, Atwell TD, Braun NN, Regner DM, Brown DL, LeRoy 11. AJ (2007) Radiation exposure and pregnancy: when should we be concerned? Radiographics 27(4):909–917 (discussion 917–918)

12. De Santis M, Di Gianantonio E, Straface G, Cavaliere AF, Caruso A, Schiavon F, Berletti R, Clementi M (2005) Ionizing radiations in pregnancy and teratogenesis: a review of Goller H, Paeslack V (1972) Pregnancy damage and birth com- plications in the children

13. of paraplegic women. Paraplegia 10:213-217